技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


MQ的介绍

2019年07月08日

一 概述

大家平时也有用到一些消息中间件(MQ),但是对其理解可能仅停留在会使用API能实现生产消息、消费消息就完事了。

对MQ更加深入的问题,可能很多人没怎么思考过。

比如,你跳槽面试时,如果面试官看到你简历上写了,熟练掌握消息中间件,那么很可能给你发起如下 4 个面试连环炮!

  • 为什么要使用MQ?

  • 使用了MQ之后有什么优缺点?

  • 怎么保证MQ消息不丢失?

  • 怎么保证MQ的高可用性?

本文将通过一些场景,配合着通俗易懂的语言和多张手绘彩图,讨论一下这些问题。

为什么要使用MQ?

相信大家也听过这样的一句话: 好的架构不是设计出来的,是演进出来的。

这句话在引入MQ的场景同样适用,使用MQ必定有其道理,是用来解决实际问题的。而不是看见别人用了,我也用着玩儿一下。

其实使用MQ的场景有挺多的,但是比较核心的有3个:

异步、解耦、削峰填谷

异步

我们通过实际案例说明:假设A系统接收一个请求,需要在自己本地写库执行SQL,然后需要调用BCD三个系统的接口。

假设自己本地写库要3ms,调用BCD三个系统分别要300ms、450ms、200ms。

那么最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,可能用户会感觉太慢了。

此时整个系统大概是这样的:

但是一旦使用了MQ之后,系统A只需要发送3条消息到MQ中的3个消息队列,然后就返回给用户了。

假设发送消息到MQ中耗时20ms,那么用户感知到这个接口的耗时仅仅是20 + 3 = 23ms,用户几乎无感知,倍儿爽!

此时整个系统结构大概是这样的:

可以看到,通过MQ的异步功能,可以大大提高接口的性能。

解耦

假设A系统在用户发生某个操作的时候,需要把用户提交的数据同时推送到B、C两个系统的时候。

这个时候负责A系统的哥们想:没事啊,B、C两个系统给我提供一个Http接口或者RPC接口,我把数据推送过去不就完事了吗。负责A系统的哥们美滋滋。

如下图所示:

一切看起来很美好,但是随着业务快速迭代,这个时候系统D也想要这个数据。那既然这样,A系统的开发同学就改咯,在发送数据给BC的同时加上一个D。

但是,越到后面越发现,麻烦来了。。。

整个系统好像不止这个数据要发送给BCD、还有第二、第三个数据要发送给BCD。甚至有时候又加入了E、F等等系统,他们也要这个数据。

并且有时候可能B系统突然又不要这个数据了,A系统该来改去,A系统的开发哥们头皮发麻。

更复杂的场景是,数据通过接口传给其他系统有时候还要考虑重试、超时等一些异常情况,真是头发都白了呀。。。

来看下图,体会一下这无助的现场:

这个时候,就该我们的MQ粉墨登场了!

这种情况下使用MQ来解耦是在合适不过了,因为负责A系统的哥们只需要把消息扔到MQ就行了,其他系统按需来订阅消息就好了。

就算某个系统不需要这个数据了,也不会需要A系统改动代码。

看看加入MQ解耦的下图,是不是清爽了很多!

削峰填谷

举个例子,比如我们的订单系统,在下单的时候就会往数据库写数据。但是数据库只能支撑每秒1000左右的并发写入,并发量再高就容易宕机。

低峰期的时候并发也就100多个,但是在高峰期时候,并发量会突然激增到5000以上,这个时候数据库肯定死了。

如下图,来感受一下数据库被打死的绝望:

但是使用了MQ之后,情况就变了!

消息被MQ保存起来了,然后系统就可以按照自己的消费能力来消费,比如每秒1000个数据,这样慢慢写入数据库,这样就不会打死数据库了:

整个过程,如下图所示:

至于为什么叫做削峰填谷呢?来看看这个图:

如果没有用MQ的情况下,并发量高峰期的时候是有一个“顶峰”的,然后高峰期过后又是一个低并发的“谷”。 但是使用了MQ之后,限制消费消息的速度为1000,但是这样一来,高峰期产生的数据势必会被积压在MQ中,高峰就被“削”掉了。

但是因为消息积压,在高峰期过后的一段时间内,消费消息的速度还是会维持在1000QPS,直到消费完积压的消息,这就叫做“填谷”

通过上面的分析,大家就可以知道为什么要使用MQ,以及使用了MQ有什么好处。知其所以然,明白了自己的系统为什么要使用MQ。

这样以后别人问你为啥要用MQ,就不会出现 “我们组长要用MQ我们就用了” 这样尴尬的回答了。

使用了MQ之后有什么优缺点?

看到这个问题蒙圈了,用了就用了嘛!优点上面已经说了,但是这个缺点是啥啊。好像没啥缺点啊。

如果你这样想,就大错特错了,在设计系统的过程中,除了要清楚的知道为什么要用这个东西,还要思考一下用了之后有什么坏处。这样才能心里有底,防范于未然。

接下来我们就讨论一下,用MQ会有什么缺点把?

系统可用性降低

大家想想一下,上面的说解耦的场景,本来A系统的哥们要把系统关键数据发送给BC系统的,现在突然加入了一个MQ了,现在BC系统接收数据要通过MQ来接收。

但是大家有没有考虑过一个问题,万一MQ挂了怎么办?这就引出一个问题,加入了MQ之后,系统的可用性是不是就降低了?

因为多了一个风险因素:MQ可能会挂掉。只要MQ挂了,数据没了,系统运行就不对了。

系统复杂度提高

本来我的系统通过接口调用一下就能完事的,但是加入一个MQ之后,需要考虑消息重复消费、消息丢失、甚至消息顺序性的问题

为了解决这些问题,又需要引入很多复杂的机制,这样一来是不是系统的复杂度提高了。

数据一致性问题

本来好好的,A系统调用BC系统接口,如果BC系统出错了,会抛出异常,返回给A系统让A系统知道,这样的话就可以做回滚操作了

但是使用了MQ之后,A系统发送完消息就完事了,认为成功了。而刚好C系统写数据库的时候失败了,但是A认为C已经成功了?这样一来数据就不一致了。

通过分析引入MQ的优缺点之后,就明白了使用MQ有很多优点,但是会发现它带来的缺点又会需要你做各种额外的系统设计来弥补

最后你可能会发现整个系统复杂了好几倍,所以设计系统的时候要基于这些考虑做出取舍,很多时候你会发现该用的还是要用的。。。

怎么保证MQ消息不丢失?

使用了MQ之后,还要关心消息丢失的问题。这里我们挑RabbitMQ来说明一下吧。

生产者弄丢了数据

RabbitMQ生产者将数据发送到rabbitmq的时候,可能数据在网络传输中搞丢了,这个时候RabbitMQ收不到消息,消息就丢了。

RabbitMQ提供了两种方式来解决这个问题:

事务方式: 在生产者发送消息之前,通过channel.txSelect开启一个事务,接着发送消息

如果消息没有成功被RabbitMQ接收到,生产者会收到异常,此时就可以进行事务回滚channel.txRollback然后重新发送。假如RabbitMQ收到了这个消息,就可以提交事务channel.txCommit

但是这样一来,生产者的吞吐量和性能都会降低很多,现在一般不这么干。

另外一种方式就是通过confirm机制

这个confirm模式是在生产者哪里设置的,就是每次写消息的时候会分配一个唯一的id,然后RabbitMQ收到之后会回传一个ack,告诉生产者这个消息ok了。

如果rabbitmq没有处理到这个消息,那么就回调一个nack的接口,这个时候生产者就可以重发。

事务机制和cnofirm机制最大的不同在于事务机制是同步的,提交一个事务之后会阻塞在那儿

但是confirm机制是异步的,发送一个消息之后就可以发送下一个消息,然后那个消息rabbitmq接收了之后会异步回调你一个接口通知你这个消息接收到了。

所以一般在生产者这块避免数据丢失,都是用confirm机制的

Rabbitmq弄丢了数据

RabbitMQ集群也会弄丢消息,这个问题在官方文档的教程中也提到过,就是说在消息发送到RabbitMQ之后,默认是没有落地磁盘的,万一RabbitMQ宕机了,这个时候消息就丢失了。

所以为了解决这个问题,RabbitMQ提供了一个持久化的机制,消息写入之后会持久化到磁盘

这样哪怕是宕机了,恢复之后也会自动恢复之前存储的数据,这样的机制可以确保消息不会丢失。

设置持久化有两个步骤:

  • 第一个是创建queue的时候将其设置为持久化的,这样就可以保证rabbitmq持久化queue的元数据,但是不会持久化queue里的数据

  • 第二个是发送消息的时候将消息的deliveryMode设置为2,就是将消息设置为持久化的,此时rabbitmq就会将消息持久化到磁盘上去。

但是这样一来可能会有人说:万一消息发送到RabbitMQ之后,还没来得及持久化到磁盘就挂掉了,数据也丢失了,怎么办?

对于这个问题,其实是配合上面的confirm机制一起来保证的,就是在消息持久化到磁盘之后才会给生产者发送ack消息。

万一真的遇到了那种极端的情况,生产者是可以感知到的,此时生产者可以通过重试发送消息给别的RabbitMQ节点

消费端弄丢了数据

RabbitMQ消费端弄丢了数据的情况是这样的:在消费消息的时候,刚拿到消息,结果进程挂了,这个时候RabbitMQ就会认为你已经消费成功了,这条数据就丢了。

对于这个问题,要先说明一下RabbitMQ消费消息的机制:在消费者收到消息的时候,会发送一个ack给RabbitMQ,告诉RabbitMQ这条消息被消费到了,这样RabbitMQ就会把消息删除。

但是默认情况下这个发送ack的操作是自动提交的,也就是说消费者一收到这个消息就会自动返回ack给RabbitMQ,所以会出现丢消息的问题。

所以针对这个问题的解决方案就是:关闭RabbitMQ消费者的自动提交ack,在消费者处理完这条消息之后再手动提交ack。

这样即使遇到了上面的情况,RabbitMQ也不会把这条消息删除,会在你程序重启之后,重新下发这条消息过来。

怎么保证MQ的高可用性性?

使用了MQ之后,我们肯定是希望MQ有高可用特性,因为不可能接受机器宕机了,就无法收发消息的情况。

这一块我们也是基于RabbitMQ这种经典的MQ来说明一下:

RabbitMQ是比较有代表性的,因为是基于主从做高可用性的,我们就以他为例子讲解第一种MQ的高可用性怎么实现。

rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式

单机模式

单机模式就是demo级别的,就是说只有一台机器部署了一个RabbitMQ程序。

这个会存在单点问题,宕机就玩完了,没什么高可用性可言。一般就是你本地启动了玩玩儿的,没人生产用单机模式。

普通集群模式

这个模式的意思就是在多台机器上启动多个rabbitmq实例。类似的master-slave模式一样。

但是创建的queue,只会放在一个master rabbtimq实例上,其他实例都同步那个接收消息的RabbitMQ元数据。

在消费消息的时候,如果你连接到的RabbitMQ实例不是存放Queue数据的实例,这个时候RabbitMQ就会从存放Queue数据的实例上拉去数据,然后返回给客户端。

总的来说,这种方式有点麻烦,没有做到真正的分布式,每次消费者连接一个实例后拉取数据,如果连接到不是存放queue数据的实例,这个时候会造成额外的性能开销。如果从放Queue的实例拉取,会导致单实例性能瓶颈。

如果放queue的实例宕机了,会导致其他实例无法拉取数据,这个集群都无法消费消息了,没有做到真正的高可用。

所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。

镜像集群模式

镜像集群模式才是真正的rabbitmq的高可用模式,跟普通集群模式不一样的是:创建的queue无论元数据还是queue里的消息都会存在于多个实例上,

每次写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。

这样的话任何一个机器宕机了别的实例都可以用提供服务,这样就做到了真正的高可用了。

但是也存在着不好之处:

  • 性能开销过高,消息需要同步所有机器,会导致网络带宽压力和消耗很重

  • 扩展性低:无法解决某个queue数据量特别大的情况,导致queue无法线性拓展。就算加了机器,那个机器也会包含queue的所有数据,queue的数据没有做到分布式存储。

对于RabbitMQ的高可用一般的做法都是开启镜像集群模式,这样起码来说做到了高可用,一个节点宕机了,其他节点可以继续提供服务。

总结

通过本篇文章,分析了对于MQ的一些常规问题:

为什么使用MQ?

使用MQ有什么优缺点

如何保证消息不丢失?

如何保证MQ高可用性?

但是,这些问题仅仅是使用MQ的其中一部分需要考虑的问题,事实上,还有其他更加复杂的问题需要我们去解决, 比如:如何保证消息的顺序性?消息队列如何选型?消息积压问题如何解决?

本文仅仅是针对RabbitMQ的场景举例子。还有其他比较的消息队列,比如RocketMQ、Kafka

不同的MQ在面临上述问题的时候,要根据他们的原理机制来做对应的处理,这些都是本文没有顾及的内容,将在后面的文章中讨论。敬请关注。