技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


rxjava2——线程切换

2018年07月31日

简介

对rxjava 有一个简单的学习之后,笔者还是很难 理解rxjava 在服务端的使用,感觉学习了hystrix 之后,这块的理解会更深刻一些。

首先对于同步调用,rxjava的作用有限,而对于异步调用,对于类似于netty这种 方法直接返回future的,rxjava也套不上。其所谓异步调用,通常是另起 线程执行一个同步调用(从驱动线程的角度看,这就是一个异步调用了),由此成为一个多线程代码,解决多线程环境下的 数据流控制问题。

线程切换

线程控制绝对是RxJava的重点之一。在不指定线程的情况下,RxJava遵循的是线程不变的原则,在哪个线程调用subscribe(),就在哪个线程生产、消费事件。

线程控制的 本质 还是 将 当前 Observable 转换为 另一个Observable,具体的说是转换Observable的onSubscribe 方法,跟filter 等普通的数据转换一样一样的。明面上是线程切换,其实是函数 包装。

public Observable<T> observeOn(Scheduler scheduler) {
    return observeOn(this, scheduler);
}
public Observable<T> subscribeOn(Scheduler scheduler) {
    return subscribeOn(this, scheduler);
}
public Observable<T> filter(Func1<T, Boolean> predicate) {
    return filter(this, predicate);
}

谜之RxJava (三)update 2 —— subscribeOn 和 observeOn 的区别

笔者最早找到 支持observeOn 的版本0.10.0

从0.10.0 可以看到,无论是observeOn 还是subscribeOn,参数都是Scheduler,都会导致 代码切换到 另一个线程(由Scheduler 实现类决定)执行。只是observeOn 只是 表示 其之后的操作,由observeOn 指定的Scheduler执行。subscribeOn 则是 之前及之后的操作 都由subscribeOn 指定的Scheduler 执行,直到遇到observeOn。

subscribeOn

Func1<Observer<T>, Subscription> 叫 onSubscribe,Subscribe 是 Subscribe ,别弄混onSubscribe和Subscribe。

public static <T> Func1<Observer<T>, Subscription> subscribeOn(Observable<T> source, Scheduler scheduler) {
    return new SubscribeOn<T>(source, scheduler);
}

private static class SubscribeOn<T> implements Func1<Observer<T>, Subscription> {
    private final Observable<T> source;
    private final Scheduler scheduler;

    public SubscribeOn(Observable<T> source, Scheduler scheduler) {
        this.source = source;
        this.scheduler = scheduler;
    }

    @Override
    public Subscription call(final Observer<T> observer) {
        return scheduler.schedule(new Func0<Subscription>() {
            @Override
            public Subscription call() {
                return new ScheduledSubscription(source.subscribe(observer), scheduler);
            }
        });
    }
}

Observable.subscribeOn 的逻辑链条,根据 当前Observable 和 scheduler 创建一个新的 Func1<Observer<T>, Subscription> onSubscribe (学名叫subscribeOn )并基于此创建新的 Observable。 转换 onSubscribe 过程涉及到 几个Subscription 的转换

  1. 当前 Observable.subscribe(observer) 返回 Subscribe
  2. 将 Subscribe 封装为 ScheduledSubscription
  3. 将 ScheduledSubscription 封装为 SafeObservableSubscription

以NewThreadScheduler 为例

Observable.filter()				
			.map1()		
			.subscribeOn(NewThreadScheduler)
			.map2()
			.subscribe(xx)

以filter操作为例

// class Observable
public Observable<T> filter(Func1<T, Boolean> predicate) {
    return filter(this, predicate);
}
public static <T> Observable<T> filter(Observable<T> that, Func1<T, Boolean> predicate) {
    return create(OperationFilter.filter(that, predicate));
}
// class OperationFilter
public static <T> Func1<Observer<T>, Subscription> filter(Observable<T> that, Func1<T, Boolean> predicate) {
    return new Filter<T>(that, predicate);
}
  	private static class Filter<T> implements Func1<Observer<T>, Subscription> {
    private final Observable<T> that;
    private final Func1<T, Boolean> predicate;
    public Filter(Observable<T> that, Func1<T, Boolean> predicate) {
        this.that = that;
        this.predicate = predicate;
    }
    public Subscription call(final Observer<T> observer) {
        ...
     	that.subscribe(new Observer<T>() {
            public void onNext(T value) {
                try {
                    if (predicate.call(value)) {
                        observer.onNext(value);
                    }
                } catch (Throwable ex) {
                    observer.onError(ex);
                    ...
                }
            }
            public void onError(Throwable ex) {
                observer.onError(ex);
            }
            public void onCompleted() {
                observer.onCompleted();
            }
        });
        ...
    }
}
  1. filter 时的 Observable 和 最后 subscribe 当时的 Observable 已经不是同一个了。filter 时的observer 是 new 出来的,跟最后subscribe 方法参数的 observer 也不是同一个。

    动作 源Observable 对应observer
    filter Observable observer3.onNext
    map1 Observable1 observer2.onNext
    subscribeOn Observable2 observer1.onNext 只是异步驱动了一下
    map2 Observable3 observer1.onNext
    subscribe Observable4 observer.onNext

    rxjava 通过封装,只将原始的Observable 和 observer 暴露给了用户。

  2. 下一个Observable 简介持有 上一个 Observable 的引用
  3. 最新的Observable4.subscribe 驱动整个逻辑 开始 执行,具体的说 是驱动 其对应的Func1<Observer<T>, Subscription> 的执行。
  4. Observable4.subscribe 实现是 Observable4. onSubscribe.call ,方法执行链条为

     Observable4.subscribe ==>  
     Observable4.onSubscribe.call ==> 	
     Observable3.subscribe ==> 
     Observable3.subscribeOn.call ==> 驱动线程执行完毕,切换thread 
     Observable2.subscribe ==> 
     Observable2.onSubscribe.call ==> 
     Observable1.subscribe ==> 
     Observable1.onSubscribe.call ==> 
     Observable.subscribe ==> 
     Observable.onSubscribe.call ==> 
         observer3.onNext1,onNext2,onCompleted ==> 
         filter ==> 
         observer2.onNext1,onNext2,onCompleted ==> 
         ...
         observer.onNext1,onNext2,onCompleted
    

对于这个方法执行链

RxJava for 100% beginners (part3-switching threads)subscribeOn() change the thread for emitting the source Observable’s elements, no matter where you put it in your “chain”.

用一张图解释RxJava中的线程控制 则将这个方法链分为两个阶段

  1. 驱动阶段,从下游到上游,反向驱动
  2. 事件发射阶段。第一个Observable开始产生事件,然后事件流就开始正向传递

这也就解答了笔者的一个疑惑,为什么subscribeOn 放在任何位置 对“副作用函数” 都有效?因为线程的切换 在事件驱动阶段,而副作用函数的执行 在事件发射阶段。

observeOn

以下列代码为例

Observable.filter()				
			.map1()		
			.observerOn(NewThreadScheduler)
			.map2()
			.subscribe(xx)

分析下 ObserveOn 源码

// OperationObserveOn
   	public static <T> Func1<Observer<T>, Subscription> observeOn(Observable<T> source, Scheduler scheduler) {
    return new ObserveOn<T>(source, scheduler);
}

private static class ObserveOn<T> implements Func1<Observer<T>, Subscription> {
    private final Observable<T> source;
    private final Scheduler scheduler;

    public ObserveOn(Observable<T> source, Scheduler scheduler) {
        this.source = source;
        this.scheduler = scheduler;
    }

    @Override
    public Subscription call(final Observer<T> observer) {
        if (scheduler instanceof ImmediateScheduler) {
            // do nothing if we request ImmediateScheduler so we don't invoke overhead
            return source.subscribe(observer);
        } else {
            return source.subscribe(new ScheduledObserver<T>(observer, scheduler));
        }
    }
}

分析Observable 与 observer 的 变换

动作 源Observable 对应observer
filter Observable observer4.onNext
map1 Observable1 observer3.onNext
subscribeOn Observable2 observer2.onNext 变成了ScheduledObserver
map2 Observable3 observer1.onNext
subscribe Observable4 observer.onNext

分析方法执行链

Observable4.subscribe ==>  
Observable4.onSubscribe.call ==> 	
Observable3.subscribe ==> 
Observable3.subscribeOn.call ==> 
Observable2.subscribe ==> 
Observable2.onSubscribe.call ==> 
Observable1.subscribe ==> 
Observable1.onSubscribe.call ==>
Observable.subscribe ==> 
Observable.onSubscribe.call ==> 
observer4.onNext1,onNext2 ==> 
filter ==> 
observer3.onNext1,onNext2 ==> 
map ==>
observer2.onNext1,onNext2 ==> // 提交事件,驱动线程执行完毕,另一个线程执行下面的逻辑(接收事件并驱动后续执行)

...
observer.onNext1,onNext2

小结

形式上顺序执行filter、map 等,从上到下,实际上是subscribe 才真正触发执行,但最后还是按照filter、map 的顺序 执行业务逻辑——代码腾挪的艺术。

突然奇想对照下 builder 模式,示例代码可以类比为

Observable.setFilter(filterFunction)	
			.setMap1(map1Function)		
			.subscribeOn(NewThreadScheduler)
			.setMap2(map2Function)
			.setObserver(observer)
			.build()  

类似于函数式编程,返回函数 或者 函数接口的,一定要小心,代码写在哪里 跟 代码什么时候执行 没啥关系, 经常违反直觉。

Observable.just(1, 2, 3, 4, 5, 6) 
       .subscribe(new Subscriber() {
           @Override
           public void onCompleted() {
               System.out.println("Complete!");
           }
           @Override
           public void onError(Throwable e) {
           }
           @Override
           public void onNext(Integer value) {
               System.out.println("onNext: " + value);
           }
       });

比如上述代码, 一个数组本来不具备任何能力(方法),其对应的订阅者(本质就是 System.out.println("onNext: " + value);)同样也平淡无奇。但对象(此处的数组)可以加行为,行为(此处的 System.out.println)可以包括在一个对象中。 本体啥都没有,我们单靠外在的包裹,就可以将事件流、线程异步执行等概念加到上面去。