技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


《Apache Kafka源码分析》——Producer与Consumer

2017年12月08日

前言

建议先阅读下消息/任务队列,了解下消息队列中间件的宏观理论、概念及取舍

整体来说,本书是对源码的“照本宣科”,提炼的东西不多,试试另外一本书:《learning apache kafka》

Apache Kafka is a distributed streaming platform. What exactly does that mean? A streaming platform has three key capabilities:

  1. Publish and subscribe to streams of records, similar to a message queue or enterprise messaging system.
  2. Store streams of records in a fault-tolerant durable way.
  3. Process streams of records as they occur.

给自己提几个问题

  1. kafka 将消息保存在磁盘中,在其设计理念中并不惧怕磁盘操作,它以顺序方式读写磁盘。具体如何体现?
  2. 多面的offset。一个msg写入所有副本后才会consumer 可见(消息commit 成功)。leader / follower 拿到的最新的offset=LEO, 所有副本都拿到的offset = HW
  3. 一个consumer 消费partition 到哪个offset 是由consumer 自己维护的

书中源码基于0.10.0.1

宏观概念

仅从逻辑概念上看

每个topic包含多个分区,每个分区包含多个副本。作为producer,一个topic消息放入哪个分区,hash一下即可。 《learning apache kafka》every partition is mapped to a logical log file that is represented as a set of segment files of equal sizes. Every partition is an ordered, immutable sequence of messages;

整体架构图

细化一下是这样的

代码使用

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka_2.8.2</artifactId>
    <version>0.8.0</version>
</dependency>

生产者

// 配置属性
Properties props = new Properties();
props.put("metadata.broker.list", "localhost:9092");
props.put("serializer.class", "kafka.serializer.StringEncoder");
props.put("request.required.acks", "1");
ProducerConfig config = new ProducerConfig(props);
// 构建Producer
Producer<String, String> producer = new Producer<String, String>(config);
// 构建msg
KeyedMessage<String, String> data = new KeyedMessage<String, String>(topic, nEvents + "", msg);
// 发送msg
producer.send(data);
// 关闭
producer.close();

消费者

Kafka系列(四)Kafka消费者:从Kafka中读取数据

// 配置属性
Properties props = new Properties();
props.put("bootstrap.servers", "broker1:9092,broker2:9092");
props.put("group.id", "CountryCounter");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
// 订阅主题
consumer.subscribe(Collections.singletonList("customerCountries"));
// 拉取循环
try {
    while (true) {  //1)
        ConsumerRecords<String, String> records = consumer.poll(100);  //2)
        for (ConsumerRecord<String, String> record : records)  //3){
            log.debug("topic = %s, partition = %s, offset = %d,
                customer = %s, country = %s\n",
                record.topic(), record.partition(), record.offset(),
                record.key(), record.value());
            int updatedCount = 1;
            if (custCountryMap.countainsValue(record.value())) {
                updatedCount = custCountryMap.get(record.value()) + 1;
            }
            custCountryMap.put(record.value(), updatedCount)
            JSONObject json = new JSONObject(custCountryMap);
            System.out.println(json.toString(4))
        }
    }
} finally {
    consumer.close(); //4
}

背景知识

网络通信

kafka-producer/consumer 与zk 通信的部分相对有限,主要是与kafka server交互,通信时使用自定义的协议,一个线程(kafka 服务端一个线程就不够用了)裸调java NIO 进行网络通信。

  1. producer 使用 NetworkClient 与kafka server 交互
  2. consumer 使用 ConsumerNetworkClient(聚合了NetworkClient)与kafka server 交互
  3. 协议对象如下图所示,org.apache.kafka.common.protocol.ApiKeys 定义了所有 Request/Response类型,FetchXX 是一个具体的例子

  4. NetworkClient 发请求比较“委婉” 先send(缓存),最后poll真正开始发请求

    1. send,Send a new request. Note that the request is not actually transmitted on the network until one of the poll(long) variants is invoked. At this point the request will either be transmitted successfully or will fail.Use the returned future to obtain the result of the send.
    2. poll,Poll for any network IO.

传递保证语义(Delivery(guarantee) sematic)

Delivery guarantee 有以下三个级别

  1. At most once,可以丢,但不能重复
  2. At least once,不能丢,可能重复
  3. exactly once,只会传递一次

这三个级别不是一个配置保证的,而是producer 与consumer 配合实现的。比如想实现“exactly once”,可以为每个消息标识唯一id,producer 可能重复发送,而consumer 忽略已经消费过的消息即可。

consumer group rebalance

当consumer group 新加入一个consumer 时,首要解决的就是consumer 消费哪个分区的问题。这个方案kafka 演化了多次,在最新的方案中,分区分配的工作放到了消费端处理。

所谓的consumer group,指的是多个consumer实例共同组成一个组来消费topic。topic中的每个分区都只会被组内的一个consumer实例消费,其他consumer实例不能消费它。(从实现看,consumer 主动拉取的逻辑也不适合 多个consumer 同时拉取一个partition,因为宕机后无法重新消费。一个consumer 一个partition,server 端也无需考虑多线程竞争问题了)。

为什么要引入consumer group呢?主要是为了提升消费者端的吞吐量。多个consumer实例同时消费,加速整个消费端的吞吐量(TPS)。

consumer group里面的所有consumer实例不仅“瓜分”订阅topic的数据,而且更酷的是它们还能彼此协助。假设组内某个实例挂掉了,Kafka能够自动检测到,然后把这个 Failed 实例之前负责的分区转移给其他活着的consumer。这个过程就是 Kafka 中大名鼎鼎的Rebalance。其实既是大名鼎鼎,也是臭名昭著,因为由重平衡引发的消费者问题比比皆是。事实上,目前很多重平衡的Bug 社区都无力解决。

生产者

The producer connects to any of the alive nodes and requests metadata about the leaders for the partitions of a topic. This allows the producer to put the message directly to the lead broker for the partition.

大纲是什么?

  1. 线程模型
  2. 发送流程

  1. producer 实现就是 业务线程(可能多个线程操作一个producer对象) 和 io线程(sender,看样子应该是一个producer对象一个)生产消费的过程
  2. 从producer 角度看,topic 分区数量以及 leader 副本的分布是动态变化的,Metadata 负责屏蔽相关细节,为producer 提供最新数据
  3. 发送消息时有同步异步的区别,其实底层实现相同,都是异步。业务线程通过KafkaProducer.send不断向RecordAccumulator 追加消息,当达到一定条件,会唤醒Sender 线程发送RecordAccumulator 中的消息
  4. ByteBuffer的创建和释放是比较消耗资源的,为了实现内存的高效利用,基本上每个成熟的框架或工具都有一套内存管理机制,对应到kafka 就是 BufferPool
  5. 业务线程和io线程协作靠队列,为什么不直接用队列?

    1. RecordAccumulator acts as a queue that accumulates records into MemoryRecords instances to be sent to the server.The accumulator uses a bounded amount of memory and append calls will block when that memory is exhausted, unless this behavior is explicitly disabled.
    2. 用了队列,才可以batch和压缩。
  6. If the request fails, the producer can automatically retry, though since we have specified etries as 0 it won’t. Enabling retries also opens up the possibility of duplicates

业务线程

producer 在KafkaProducer 与 NetworkClient 之间玩了多好花活儿?

sender 线程

值得学习的地方——interceptor

在发送端,record发送和执行record发送结果的callback之前,由interceptor拦截

  1. 发送比较简单,record发送前由interceptors操作一把。ProducerRecord<K, V> interceptedRecord = this.interceptors == null ? record : this.interceptors.onSend(record)
  2. Callback interceptCallback = this.interceptors == null ? callback : new InterceptorCallback<>(callback, this.interceptors, tp);

对于底层发送来说,doSend(ProducerRecord<K, V> record, Callback callback)interceptors的加入并不影响(实际代码有出入,但大意是这样)。

值得学习的地方——反射的另个一好处

假设你的项目,用到了一个依赖jar中的类,但因为策略问题,这个类对有些用户不需要,自然也不需要这个依赖jar。此时,在代码中,你可以通过反射获取依赖jar中的类,避免了直接写在代码中时,对这个jar的强依赖。

消费者

While subscribing, the consumer connects to any of the live nodes and requests metadata about the leaders for the partitions of a topic. The consumer then issues a fetch request to the lead broker to consume the message partition by specifying the message offset (the beginning position of the message offset). Therefore, the Kafka consumer works in the pull model and always pulls all available messages after its current position in the Kafka log (the Kafka internal data representation).

读Kafka Consumer源码 对consumer 源码的实现评价不高

开发人员不必关心与kafka 服务端之间的网络连接的管理、心跳检测、请求超时重试等底层操作,也不必关心订阅Topic的分区数量、分区leader 副本的网络拓扑以及consumer group的Rebalance 等kafka的具体细节。

KafkaConsumer 依赖SubscriptionState 管理订阅的Topic集合和Partition的消费状态,通过ConsumerCoordinator与服务端的GroupCoordinator交互,完成Rebalance操作并请求最近提交的offset。Fetcher负责从kafka 中拉取消息并进行解析,同时参与position 的重置操作,提供获取指定topic 的集群元数据的操作。上述所有请求都是通过ConsumerNetworkClient 缓存并发送的,在ConsumerNetworkClient 中还维护了定时任务队列,用来完成HeartbeatTask 任务和AutoCommitTask 任务。NetworkClient 在接收到上述请求的响应时会调用相应回调,最终交给其对应的XXHandler 以及RequestFuture 的监听器进行处理。

Kafka对外暴露了一个非常简洁的poll方法,其内部实现了协作、分区重平衡、心跳、数据拉取等功能,但使用时这些细节都被隐藏了

Kafka provides two types of API for Java consumers:

  1. High-level API, does not allow consumers to control interactions with brokers.
  2. Low-level API, is stateless and provides fine grained control over the communication between Kafka broker and the consumer.

那么consumer 与broker 交互有哪些细节呢?The high-level consumer API is used when only data is needed and the handling of message offsets is not required. This API hides broker details from the consumer and allows effortless communication with the Kafka cluster by providing an abstraction over the low-level implementation. The high-level consumer stores the last offset (the position within the message partition where the consumer left off consuming the message), read from a specific partition in Zookeeper. This offset is stored based on the consumer group name provided to Kafka at the beginning of the process.

主动拉取 是kafka 的一个重要特征,不仅是consumer 主动拉取broker, broker partition follower 也是主动拉取leader

《learning apache kafka》

  1. producers and consumers work on the traditional push-and-pull model, where producers push the message to a Kafka broker and consumers pull the message from the broker.
  2. Log compaction,相同key的value 只会保留最新的
  3. Message compression in Kafka, For the cases where network bandwidth is a bottleneck, Kafka provides a message group compression feature for efficient message delivery.
  4. replication modes。Asynchronous replication: as soon as a lead replica writes the message to its local log, it sends the acknowledgement to the message client and does not wait for acknowledgements from follower replicas。Synchronous replication 则反之

小结

  1. 内存队列,push和poll 本质是对底层数组操作的封装
  2. 消息中间件,push 和 poll 本质是数据的序列化、压缩、io发送 与 io 拉取、发序列化、解压缩,这就有点rpc 的味道了,只是rpc 是双方直接通信,而消息中间件是 producer/consumer 都与 kafka server 通信。