技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


netty(七)netty在框架中的使用套路

2017年03月18日

前言

服务端网络开发的基本套路

简单的netty client demo是

public class TimeClient {
    public static void main(String[] args) throws InterruptedException {
        String host = "127.0.0.1";
        int port = 8080;
        new TimeClient().connect(host, port);
    }
    public void connect(String host,int port) throws InterruptedException{
        EventLoopGroup workerGroup = new NioEventLoopGroup();
        try {
            Bootstrap b = new Bootstrap();
            b.group(workerGroup).channel(NioSocketChannel.class).option(ChannelOption.SO_KEEPALIVE, true)
                    .handler(new ChildChannelHandler());
            ChannelFuture f = b.connect(host, port).sync();
            // 此处,你其实可以直接使用f.writeAndFlush发送数据
            // 等待关闭
            f.channel().closeFuture().sync();
        } finally {
            workerGroup.shutdownGracefully();
        }
    }
    private class ChildChannelHandler extends ChannelInitializer<SocketChannel> {
        protected void initChannel(SocketChannel arg0) throws Exception {
            arg0.pipeline().addLast(new TimeClientHandler());
        }
    }
}

首先,该代码启动一个进程,进程的目的是启动netty。而通常框架中,netty以及其实现的网络通信,只是框架功能的一个基础部分。我们如何对netty进行封装,使其“返璞归真”,回归到java socket原来的api的使用感觉:socket.write(byte[]),甚至于借助netty的特性,提供异步操作的api。

或者说,一个通用的通信分层框架是一个什么样的结构,而上述netty client demo代码如何分散或适配在这个框架中,这是一个很有意思的部分。

最近在学习zookeeper的源码,zk client的transport层提供java原生nio和netty两种实现。基于zk中netty使用方式的借鉴和自己的思考,我实现了一个基于netty的、通用的transport层框架,参见topsli/pigeon

定义netty transport层与上层的边界

nio/netty的一些特点

  1. nio/netty本质上是异步的,同步接口需要另外包装。为何?因为nio或者netty本身用了底层OS的异步特性,可以控制读写的逻辑,却无法控制读写的时机。==> 只能使用缓冲区收发数据,或者说,缓冲区成为业务程序和nio/os底层交互的媒介。
  2. 对于网络数据传输,需要制定一个通信协议。尤其是,如何定义一段有意义的数据的开始与结束。这就需要事先定义好协议model、以及对协议model的编解码。

具体的说,在实现一个transport层框架之前,我们要想清楚,什么是业务层要传入的,什么是transport层要解决的。

业务层要传入的

  1. 业务协议数据请求model、响应model(请求和响应model可以是同一个)定义及其序列化逻辑。对应zk就是CreateRequest、DeleteRequest、CreateResponse等
  2. 对于transport层server端,需要业务层传入协议数据处理逻辑,即将根据请求model返回响应model。

transport层负责的

  1. 通用数据请求model、响应model(可以是同一个)定义及其序列化逻辑。对应zk就是Packet。为什么transport层还需要一个通用的model?因为数据model的收发需要一些辅助字段,比如客户端收到一个响应model,要和其对应的请求model关联起来,这就需要一个id字段。而transport层model通常和业务层协议model不是同一个,因为层次之间共用model会导致transport层字段暴露到上层。

  2. 连接的可靠性检测,比如收发ping/pong消息,如有异常,及时反馈到上层
  3. transport client 接口异步机制的实现,callback/future,这个通常有两个实现方案

    • 维护一个map及全局id产生器,每次请求put<id,request>,从响应中得到一个<id,response>,通过id将request和response关联起来。

我们经常说,分层,但分层的关键在哪里,如果层之间的接口设计不好,不仅上层会侵染下层,下层也会侵染上层,比如netty数据的读取是在回调方法中,此时上层要想获得响应

上下层交互 具体形式 对协议model的影响
推的方式 上层对下层传入callback,下层存储<id,callback>映射。在netty读取到响应的回调方法中,根据返回数据id找到并调用callback request和response packet共用一个id维持关联关系
拉的方式 上层与下层共用一个<id,packet>,这个map是上下层的接口之一。在netty读取到响应的回调方法中,根据id找到并给packet 的状态字段赋值。上层轮询packet的状态字段值 packet中要有一个状态字段

浅谈TCP/IP网络编程中socket的行为提到:无论是磁盘io还是网络io,应用程序乃至r/w系统调用都不负责数据实际的读写(接收/发送),这些控制皆发生在TCP/IP栈中,对应用程序是透明的。系统调用及之上的应用程序和tcp协议栈就是通过send buffer和receive buffer沟通。

而对于netty和上层框架来说,netty本身是一个死循环的系统:等待io事件然后处理,外界可以提交任务(比如写数据)交给这个循环系统执行。这个循环系统也会在读到数据时,执行设定的handler。执行设定的handler,里面可以做的文章就比较多了。

zk 使用netty的一些特别之处

zookeeper中采用“拉的方式”,但transport层并没有维护<id,packet>。因为zookeeper client确保了发送数据请求(ping等请求是另一种逻辑)的有序性,因此上下层共用一个packet queue即可。

zk transport层提供了两种方案:nio和netty。即ClientCnxnSocket的两个实现类ClientCnxnSocketNIO和ClientCnxnSocketNetty。netty比直接使用nio强的地方在于(或者说netty做了哪些工作):固化了线程模型与nio的结合方式,同时将编解码的过程、pipeline的思想融入处理过程中,使得“nio与线程结合”的方式,由”百家争鸣”(hadoop传文件块对nio的使用 VS zk对nio的使用)变成“独尊儒术”。

zk client 实现中,netty收到数据后,只是简单的将字节流写入到zk自定义的缓冲区,并未将编解码过程融入到netty运行过程中。最开始我以为zk这样做的目的是nio和netty的实现共用一些逻辑(自己手动对自定义缓冲区数据做编解码)。在我自己实现topsli/pigeon 的过程中,发现zk client的抽象接口是ReplyHeader submitRequest(RequestHeader h, Record request, Record response, WatchRegistration watchRegistration),response对象是事先创建好的。若套用了netty的编解码流程,response对象将由netty框架生成,再利用其为用户创建的response对象赋值,就多费了一番波折,并且不是很有必要。

pushy

Pushy is a Java library for sending APNs (iOS, OS X, and Safari) push notifications.

pushy 对netty的使用和zk有所不同

  1. zk client本身具备复杂的业务逻辑,netty只是作为transport
  2. 和apns交互用的是http2协议,而http2的编解码是可以作为netty 的一个handler“插件”存在的,同时,pushy对外提供的接口也完全是异步的。

     ApnsPayloadBuilder payloadBuilder = new ApnsPayloadBuilder();
     payloadBuilder.setAlertBody("Example!");
     String payload = payloadBuilder.buildWithDefaultMaximumLength();
     String token = TokenUtil.sanitizeTokenString("<efc7492 bdbd8209>");
     SimpleApnsPushNotification  pushNotification = new SimpleApnsPushNotification(token, "com.example.myApp", payload);
     Future<PushNotificationResponse<SimpleApnsPushNotification>> sendNotificationFuture = apnsClient.sendNotification(pushNotification);
    

一些技巧

使用内部类

一个类如果只是被某一个类引用的话,做成内部类也无妨,虽然外围类代码看起来长了点,但少传了很多参数。比如,下文中ZKClientHandler 的messageReceived方法就像是ClientCnxnSocketNetty的方法一样操作incomingBuffer,便于清晰的观察数据读写的来龙去脉。

ClientCnxnSocketNetty{
	protected ByteBuffer incomingBuffer = lenBuffer;	// extend from ClientCnxnSocket
	ZKClientHandler extends SimpleChannelUpstreamHandler{
		public void messageReceived(ChannelHandlerContext ctx,
                                    MessageEvent e) throws Exception {
                                    	handle incomingBuffer;
                                    }
	}
}

连接数管理

你是不是觉得,一个netty client只能用一个channel?

通过本文开头的netty client demo,人很容易想当然的认为,netty client 与 channel是一对一关系。事实上不是的,我们可以为client 维护一个channel pool,进而提高通信效率。毕竟只有一个channel,再怎么异步,性能还是有限的。

对于服务端来说,能够支持的总连接数是有限的,如果一个客户端建立了大量的连接,将严重限制服务端可以服务的客户端数,因此服务端针对一个具体的客户端,要有一个连接数(主要是上限)管理。

相关细节参见通用transport层框架pigeon