技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


java io涉及到的一些linux知识

2017年04月16日

简介

本文最重要的一个收获是我们要知道:一次网络io 程序与内核的交互是两个阶段,正是按照这个两个阶段的不同处理,linux 网络io 分为5种模型。

io设备

磁盘(和内存)是一个可寻址的大数组(内存寻址:段 ==> 页 => 字节,磁盘寻址 磁盘 ==> xx ==> 字节),而os和应用都无法直接访问这个大数组(强调一下,即便是os,也是通过文件系统,即/xx/xx的方式来访问文件的。这也是为什么load os的时候,有一个初始化文件系统的过程)。文件系统则是更高层抽象,文件系统定义了文件名、路径、文件、文件属性等抽象,文件系统决定这些抽象数据保存在哪些块中。

  设备
面向流 tty、socket
面向块 磁盘

当我们需要进行文件操作的时候,5个API函数是必不可少的:Create,Open,Close,Write和Read函数实现了对文件的所有操作。PS:很多时候,觉得close方法没用,但一个文件io都会占用一个fd句柄,close便用于释放它们。

linux0.11内核文件读取的过程

  1. 应用程序调用系统调用read(包含文件路径等参数),进入内核态。
  2. 内核根据文件路径找到对应的设备号和磁盘数据块。(磁盘的索引块事先会被加载到内存)
  3. 先申请一个缓冲区块,将磁盘数据块挂到缓冲区块上(如果该缓冲区块已存在,就算了),进程挂起(直到缓冲块数据到位)。
  4. 将缓冲区块挂接到一个请求项上(struct request)。(该struct描述了请求细节:将某个设备的某数据块读到内存的某个缓冲区块上)
  5. 将请求项挂到该设备的请求队列上
  6. 该设备处理这个请求项时,根据设备号和块设备struct(预先初始化过),找到该设备的请求项处理函数
  7. 请求项处理函数取出该设备请求项队列的队首请求项,根据请求项的内容(操作什么设备,读还是写操作,操作那个部分,此处以读操作为例)给设备下达指令(将相应数据发送到指定端口),并将读盘服务程序与硬盘中断操作程序挂接。
  8. 硬盘读取完毕后发生中断,硬盘中断程序除进行常规操作(将数据读出到相应寄存器端口)外,调用先前挂接到这里的读盘服务程序
  9. 读盘服务程序将硬盘放在数据寄存器端口的数据复制到请求项指定的缓冲块中,并根据数据是否读取完毕(根据请求项内容判断),决定是否停止读取。
  10. 如果读取完毕,唤醒因为缓冲块挂起的进程。否则,继续读取。

上述叙述主要涉及了内核态操作,并不完全妥当,但整体感觉是有了。缓冲区读取完毕后,内核随即把数据从内核空间的临时缓冲区拷贝到进程执行read()调用时指定的缓冲区。

缓冲区

缓冲区的表现形式:

  1. 对于网络:socket有一个send buffer和receive buffer;
  2. 对于磁盘:内存会有一个专门的区域划分为缓冲区,由操作系统管理

浅谈TCP/IP网络编程中socket的行为,无论是磁盘io还是网络io,应用程序乃至r/w系统调用都不负责数据实际的读写(接收/发送)。对于每个socket,拥有自己的send buffer和receive buffer。以write操作为例,write成功返回,只是buf中的数据被复制到了kernel中的TCP发送缓冲区。至于数据什么时候被发往网络,什么时候被对方主机接收,什么时候被对方进程读取,系统调用层面不会给予任何保证和通知。已经发送到网络的数据依然需要暂存在send buffer中,只有收到对方的ack后,kernel才从buffer中清除这一部分数据,为后续发送数据腾出空间。这些控制皆发生在TCP/IP栈中,对应用程序是透明的,应用程序继续发送数据,最终导致send buffer填满,write调用阻塞。

这就跟我潜意识的认知,稍稍有点不同。我以前的认为是,一个write操作,数据从发起,到调用网卡驱动发数据,都是一起干完的。

缓冲区既可以处理各部件速度不一致的矛盾,也可以作为各个子系统的边界存在。

阻塞非阻塞

我们从代码上理解下阻塞和非阻塞的含义

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

为socket设置nonblocking

// 设置一个文件描述符为nonblock
int set_nonblocking(int fd){
    int flags;
    if ((flags = fcntl(fd, F_GETFL, 0)) == -1)
        flags = 0;
    return fcntl(fd, F_SETFL, flags | O_NONBLOCK);
}

浅谈TCP/IP网络编程中socket的行为讲到了两个关键问题

  1. read/write的语义:为什么会阻塞?
  2. blocking(默认)和nonblocking模式下read/write行为的区别。

或者,我们可以说,blocking和nonblocking的本质,就是影响了read/write(可能还有connect)的语义

  1. blocking,表示等,缓冲区有数据(read)或有足够的空间
  2. nonblocking,成就成,不成就返回-1

异步网络模型

阻塞io

非阻塞io

通常非阻塞I/O与I/O事件通知机制结合使用,避免应用层不断去轮询检查是否可读,提高程序的处理效率。

IO事件通知机制——IO复用

IO事件通知机制——SIGIO

同步异步——调用方和执行方是不是一个线程

POSIX规范定义了一组异步操作I/O的接口,不用关心fd 是阻塞还是非阻塞,异步I/O是由内核接管应用层对fd的I/O操作,以aio_read (注意,异步io 连方法名都不一样,这就是没看APUE( UNIX环境高级编程) 的缺点)实现异步读取IO数据为例

多种I/O模型及其对socket效率的改进

对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:

  1. 等待数据准备 (Waiting for the data to be ready)
  2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

也就是说,不管是阻塞、非阻塞、多路复用io,第一阶段都是用户进程主动去发现socket send/receive buffer是否ready,区别只是 用户态轮询还是内核态轮询(比如select/poll)和一次轮询几个fd的问题,第二阶段都是要阻塞。而异步io则是内核主动向用户进程发起通知的,第一和第二个阶段都不会阻塞。 PS: 这是这个博客最重要的一句话。

从bio 到 nio 这个小进步,便使得redis 有底气使用单线程来扛高负载,Redis 学习

异步I/O是由内核接管应用层对fd的I/O操作,从linux内核线程分析来看,本质就是linux 内核专为AIO 启动了多个内核线程,调用方和执行方不是一个线程。BIO 和NIO 的io 操作是调用方执行的,而AIO的io 操作是 kernel线程完成的 使用异步 I/O 大大提高应用程序的性能

  1. io 操作一定是在内核态执行的
  2. BIO/NIO 调用方执行 read(fd,buffer),read代码是os的,但操作是在调用方进程/线程的内核态执行的
  3. AIO,调用方只是传了个“需求”,类似于aio_read("read 哪个fd,缓冲区位置,完事儿了去干啥")。内核线程接到需求,干活儿,然后通知调用方。

netty 通过多加一层,netty 引擎层持有fd 引用(也就是socket channel),变相的将多路复用io封装为异步效果。参见异步编程

小结一下阻塞/非阻塞、同步/异步

陈皓在《左耳听风》中提到:异步io模型的发展技术是:select -> poll -> epoll -> aio -> libevent -> libuv。其演化思想参见: Understanding Reactor Pattern: Thread-Based and Event-Driven

各个io模型对比

建议先看下 不同层面的异步 不同层次的异步有所感觉。

深入剖析通信层和 RPC 调用的异步化(上)

  同步阻塞 I/O(BIO) 非阻塞 I/O(NIO) 异步 I/O(AIO)
客户端个数:I/O 线程 1:1 M:1(1 个 I/O 线程处理多个客户端连接) M:0(不需要用户启动额外的 I/O 线程,被动回调)
I/O 类型(阻塞) 阻塞 I/O 非阻塞 I/O 非阻塞 I/O
I/O 类型(同步) 同步 I/O 同步 I/O(I/O 多路复用) 异步 I/O
API 使用难度 简单 非常复杂 复杂
调试难度 简单 复杂 复杂
可靠性 非常差
吞吐量

从中笔者解决了一直以来对NIO和AIO的一个疑惑:非阻塞io + rpc层异步化 也可以给上层业务层 提供 异步的感觉,但其毕竟比 AIO 多一个IO线程。

引用

存储之道 - 51CTO技术博客 中的《一个IO的传奇一生》

Linux IO模式及 select、poll、epoll详解

笔者个人微信订阅号