技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


netty对http2协议的解析

2017年06月12日

前言

本文从源码角度分析netty-codec-http2对http2协议的实现,netty 对 http1.1的实现参见netty对http协议解析原理(一)

http2协议

http/2中文版 根据rfc7540翻译

HTTP2引入了一下的三个新概念:

  1. Stream: 已经建立连接的双向字节流,用唯一ID标示,可以传输一个或多个消息
  2. Message:逻辑/语义上的HTTP消息,请求或者响应,可以包含多个 frame
  3. Frame:HTTP2通信的最小单位,二进制头封装,封装HTTP头部或body

所以,直观来说,http2通信,就是收发一个个Http2Frame

Http2Frame 格式

  bit数 作用
length 24 payload length
type 8 帧的类型
flags 8 比如一个END_STREAM 标志位,表示一个流的结束
R 1 保留字段
stream identifier 31 标明帧所属的stream
payload    

Http2Frame 类型

  type值    
data 0x0    
header 0x1    
PRIORITY 0x2    
RST_STREAM 0x3 流结束帧,用于终止异常流  
SETTINGS 0x4 连接配置参数帧 设置帧由两个终端在连接开始时发送,连接生存期的任意时间发送;设置帧的参数将替换参数中现有值;client和server都可以发送;设置帧总是应用于连接,而不是一个单独的流;
PUSH_PROMISE 0x5 推送承诺帧  
PRIORITY 0x6 检测连接是否可用  
GOAWAY 0x7 通知对端不要在连接上建新流  
WINDOW_UPDATE 0x8 实现流量控制  
CONTINUATION 0x9    

我们可以将frame笼统的分为data frame和控制frame,每一种类型的payload都是有自己的结构

请求过程

http2 的版本标识:

  1. h2:基于TLS之上构建的HTTP/2,作为ALPN的标识符,两个字节表示,0x68, 0x32,即https
  2. h2c:直接在TCP之上构建的HTTP/2,缺乏安全保证,即http

在不知道服务器是否支持http2的情况下,可以利用http的升级机制发送试探包

http2连接过程(不同于http1直接发送请求)

流量控制

简单说,就是发送方启动是有个窗口大小(默认64K-1),发送了10K的DATA帧,就要在窗口里扣血(减掉10K),如果扣到0或者负数,就不能再发送;接收方收到后,回复WINDOW_UPDATE帧,里面包含一个窗口大小,数据发送方收到这个窗口大小,就回血,如果回血到正数,就又能发不超过窗口大小的DATA帧。

这种流控方式就带来一些问题:

  1. 如果接收方发的WINDOW_UPDATE frame丢了,当然tcp会保证重传,但在WINDOW_UPDATE重传之前,就限制了发送方发送数据
  2. 一旦发送方初始windows size确定,那么发送方的发送速度是由接收方 + 网络传输决定的,如果发送方的速度大于接收方的应答,那么就会有大量的数据pending。

流控只限定data类型的frame,其它限定参见http2-frame-WINDOW_UPDATE

netty实现

对外的使用接口

http2本身一个复杂的协议,有着自己的一套“复杂的类图”,那么netty 与 netty-http2如何结合?

  1. 配置Http2ConnectionHandler 负责decode数据,decode时会触发Http2FrameListener的执行
  2. 自定义Http2FrameListener,并与Http2ConnectionHandler关联
  3. 使用Http2ConnectionEncoder.writeXX发送frame,write方法的执行要传入ctx对象。

整体结构

前文提过,http2通信,就是收发一个个Http2Frame。在代码层面上,接口也是围绕各个类型的frame的onXXRead和writeXXX来进行的。

上层接口关系如下

主要的点如下

  1. Http2ConnectionHandler extends ByteToMessageDecoder,整个读的流程由ByteToMessageDecoder.onDecode方法驱动。
  2. Http2FrameReader和Http2FrameWriter只是单纯的负责读写frame,Http2FrameReader.readFrame(ChannelHandlerContext ctx, ByteBuf input, Http2FrameListener listener) throws Http2Exception;中有一个listener成员,读取的frame会根据类型的不同,触发listener onXXRead方法的执行。Http2FrameWriter负责各类frame的写入。
  3. frame包括数据frame和控制frame

    • 读取到控制frame时,要更新本地控制数据,比如收到window update frame
    • 读取到控制frame时,要对远端控制指定做出一定的反应,比如收到end frame of stream 或者 rst frame,即需要关闭stream,清除本地的stream数据(这里工作由Http2LifecycleManager负责)
    • write数据时,要考虑本地控制model的实际情况,比如流控。
    • write数据时,要对调用方控制指令做出一定的反应,比如调用方发送了end frame of stream

    这也是Http2ConnectionHandler没有直接聚合Http2FrameReader和Http2FrameWriter,而是另提一个Http2ConnectionDecoder、Http2ConnectionEncoder的原因。同时,因为读写逻辑的任务不同,其代码组织也就稍有不同。

从中学到的:

  1. 接口只能指定方法,这个方法可以描述一个功能,也可以描述一个实现类应该具备哪些成员。
  2. 接口只是描述一个角色,而类可以根据自己实现这个角色的便捷性(比如具备所有相关的能力对象),实现多个角色。
  3. 面向过程,是从驱动代码的开始处(一般是main方法,此处则是eventloop及其驱动的onDecode方法),线性的实现逻辑。面向对象,则是抛开驱动逻辑,分析业务应该具备哪些对象,对象之间的关系是怎样的。对象和线程通常是撕裂的。

明确整体结构,还有两个主线

  1. netty 和 netty-http2如何交互
  2. netty-http2 和频控组件如何交互

数据收发

数据接收

Http2ConnectionHandler extends ByteToMessageDecoder.onDecode ==> Http2ConnectionDecoder.decodeFrame ==> Http2FrameReader. readFrame(ChannelHandlerContext ctx, ByteBuf input, Http2FrameListener listener) ==> Http2FrameListener 回调函数

netty对接收数据的抽象,基本上就是各种帧的监听事件。

interface Http2FrameListener{
	int onDataRead(ChannelHandlerContext ctx, int streamId, ByteBuf data, int padding,
               boolean endOfStream) throws Http2Exception;
   void onHeadersRead(ChannelHandlerContext ctx, int streamId, Http2Headers headers, int padding,
        boolean endOfStream) throws Http2Exception;
   void onPriorityRead(ChannelHandlerContext ctx, int streamId, int streamDependency,
        short weight, boolean exclusive) throws Http2Exception;
   void onRstStreamRead(ChannelHandlerContext ctx, int streamId, long errorCode) throws Http2Exception;
   void onSettingsAckRead(ChannelHandlerContext ctx) throws Http2Exception;
   void onSettingsRead(ChannelHandlerContext ctx, Http2Settings settings) throws Http2Exception;
   void onPingRead(ChannelHandlerContext ctx, ByteBuf data) throws Http2Exception;
   void onPingAckRead(ChannelHandlerContext ctx, ByteBuf data) throws Http2Exception;
   void onPushPromiseRead(ChannelHandlerContext ctx, int streamId, int promisedStreamId,
        Http2Headers headers, int padding) throws Http2Exception;
   void onGoAwayRead(ChannelHandlerContext ctx, int lastStreamId, long errorCode, ByteBuf debugData)
        throws Http2Exception;
   void onWindowUpdateRead(ChannelHandlerContext ctx, int streamId, int windowSizeIncrement)
        throws Http2Exception;
   void onUnknownFrame(ChannelHandlerContext ctx, byte frameType, int streamId, Http2Flags flags, ByteBuf payload)
        throws Http2Exception;
}

一般情况下

  1. 用户处理onHeadersRead和onDataRead等业务数据
  2. netty http2处理onWindowUpdateRead和onGoAwayRead等控制数据

同时,提供Http2Connection、Http2Stream来存储对应帧、Stream的上下文数据。

DefaultHttp2Connection Http2Connection{
	 IntObjectMap<Http2Stream> streamMap = new IntObjectHashMap<Http2Stream>();
	 DefaultEndpoint<Http2LocalFlowController> localEndpoint;
	 DefaultEndpoint<Http2RemoteFlowController> remoteEndpoint;
	 List<Listener> listeners = new ArrayList<Listener>(4);
	 Promise<Void> closePromise;
}
  1. 存储连接上的Http2Stream
  2. 流控
  3. 监听者
  4. 关闭状态

数据发送

Http2FrameWriter{
	 ChannelFuture writeHeaders(ChannelHandlerContext ctx, int streamId, Http2Headers headers,
                           int padding, boolean endStream, ChannelPromise promise);
    ChannelFuture writePriority(ChannelHandlerContext ctx, int streamId, int streamDependency,
        short weight, boolean exclusive, ChannelPromise promise);
   ...
}

写有两种

  1. 非data数据直接发送,this.encoder().writeHeaders ==> Http2FrameWriter.writeHeaders(ChannelHandlerContext ctx, int streamId, Http2Headers headers, int padding, boolean endStream, ChannelPromise promise)
  2. data数据由流控组件负责发送,this.encoder().writeData ==> encoder.flowController().addFlowControlled

所以流控是一个大头

流控

流控是双向的,根据远程的window update更新流控数据,同时,根据消费数据以及本地空间发送window update。本文主要侧重于前者。

即便window size富余,流控组件也只是write数据,不会write flush数据。

流控组件的接口

流控组件Http2FlowController与外部的接口

  1. 提交数据

    encoder.writeData() ==> flowController().addFlowControlled 将数据加入内部队列。可以看到,这里并没有真正写数据。

  2. 何时真正写数据,写操作时,会根据window size是否富余,来判断是否实际进行读写。:

    • Http2ConnectionHandler extends ByteToMessageDecoder implements ChannelOutBoundHandler
    • ByteToMessageDecoder extends ChannelInboundHandlerAdapter
    • Http2ConnectionHandler 覆盖了ChannelOutBoundHandler的flush方法,执行encoder.flowController().writePendingBytes();
    • Http2ConnectionHandler 覆盖了ChannelInboundHandlerAdapter 的channelWritabilityChanged、channelReadComplete方法,触发flush方法的执行,执行encoder.flowController().writePendingBytes();
  3. 更新window size

    DefaultHttp2ConnectionDecoder 本身内置一个 Http2FrameListener,decoder回调onWindowUpdateRead,执行encoder.flowController().incrementWindowSize(stream, windowSizeIncrement);

流控组件的发送逻辑

首先,连接有一个整体的window size,每个stream也有自己的window size。

encoder.flowController().writePendingBytes(); ==> streamByteDistributor.distribute(bytesToWrite, writer)触发的是整个连接的发送,在整个连接window size 富余的前提下,从连接里拿出还有富余window size的stream,streamByteDistributor确定stream此次的numBytes,由writer负责实际的ctx.write。

对于每一个stream,有两个state,state对stream做进一步封装

  1. 一个StremByteDistributor.StreamState负责记录它的window size,pending bytes。尽管caller调用组件发送帧,但流控组件按byte发送数据,数量由streamByteDistributor确定。
  2. 一个UniformStreamByteDistributor.State/WeightedFairQueueByteDistributor.State,该state作为载体 ,存储stream及优先级数据。该state存储在个UniformStreamByteDistributor/WeightedFairQueueByteDistributor的队列中。

比如采用公平策略的UniformStreamByteDistributor,假设connection window size = 1000,stream window size =120,该connection 一共10个stream,则本次encoder.flowController().writePendingBytes(),该stream可以发送min(120,1000/10)个字节的数据。在实际情况下,还要考虑channel 写缓冲区的大小。

收到一个window update frame,接收方处理该frame100的数据。则一方面会更新对应stream的window size,加100,也会更新conneciton window size,加100。