技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


jib源码分析及应用

2018年11月19日

简介

阅读本文前,建议事先了解下 docker环境下的持续构建

基本使用

直接通过代码做镜像

Jib.from("busybox")
   .addLayer(Arrays.asList(Paths.get("helloworld.sh")), AbsoluteUnixPath.get("/")) 
   .setEntrypoint("sh", "/helloworld.sh")
   .containerize(
       Containerizer.to(RegistryImage.named("gcr.io/my-project/hello-from-jib")
                                     .addCredential("myusername", "mypassword")));

集成到maven

集成到pom

Google开源其Java容器化工具Jib,简化镜像构建全流程

mvn compile jib:build 从中可以看到

[INFO] Retrieving registry credentials for harbor.test.xx.com...
[INFO] Getting base image harbor.test.xx.com/test/jdk8-tomcat8...
[INFO] Building dependencies layer...
[INFO] Building resources layer...
[INFO] Building classes layer...
[INFO] Retrieving registry credentials for harbor.test.xxx.com...
[INFO] Finalizing...
[INFO] 
[INFO] Container entrypoint set to [java, -cp, /app/libs/*:/app/resources/:/app/classes/, org.apache.catalina.startup.Bootstrap]
[INFO] 
[INFO] Built and pushed image as harbor.xx/test/jib-demo
  1. 与常规的将代码及依赖 打成一个jar 包作为一个layer 不同,jib 将dependencies、resources、 classes(即项目代码) 分别打成一个layer, 在项目实践中,dependencies、resources 变化不多 ,因此能够复用相当一部分空间。

  2. maven pom.xml 配置 针对插件的 0.9.9 版本

     <plugin>
         <groupId>com.google.cloud.tools</groupId>
         <artifactId>jib-maven-plugin</artifactId>
         <version>0.9.9</version>
         <configuration>
             <allowInsecureRegistries>false</allowInsecureRegistries>
             <from>
                 <image>harbor.test.xxx.com/test/jdk8</image>
                 <auth>
                     <username>xxx</username>
                     <password>xxx</password>
                 </auth>
             </from>
             <to>
                 <image>harbor.test.xxx.com/test/jib-springboot-demo</image>
                 <auth>
                     <username>xxx</username>
                     <password>xxx</password>
                 </auth>
             </to>
             <container>
                 <mainClass>com.xxx.springboot.demo.DockerSpringbootDemoApplication</mainClass>
             </container>
         </configuration>
     </plugin>
    

还有一种方案 Optimizing Spring Boot apps for Docker

通过mvn调用

假设存在一个jib-demo的web项目,则可以在项目目录下(与项目pom.xml平级)执行

mvn compile com.google.cloud.tools:jib-maven-plugin:0.10.0:build \
	-Djib.from.image=xx/common/jdk8-tomcat8 \
    -Djib.from.auth.username=zhangsan \
    -Djib.from.auth.password=lisi \
	-Djib.to.image=xx/test/jib-demo \
    -Djib.to.auth.username=zhangsan \
    -Djib.to.auth.password=lisi

也就是所有的pom配置都可以转换为命令行配置,使用这种方式的好处是开发无感知。

打tag

To tag the image with a simple timestamp, add the following to your pom.xml:

<properties>
  <maven.build.timestamp.format>yyyyMMdd-HHmmssSSS</maven.build.timestamp.format>
</properties>
Then in the jib-maven-plugin configuration, set the tag to:

<configuration>
  <to>
    <image>my-image-name:${maven.build.timestamp}</image>
  </to>
</configuration>

源码分析

针对jib 0.10.1

环境准备

  1. https://github.com/GoogleContainerTools/jib 拉取源文件,主要分为三个部分

     docs
     jib-core
     jib-gradle-plugin
     jib-maven-plugin
     jib-plugins-common
    
  2. jib-core jib-gradle-plugin jib-maven-plugin 是单独的项目(使用ide 单独打开),后两者都用到了 jib-core,等于说基本实现 靠 jib-core,然后包了一个gradle 或 maven 的壳
  3. 引入gradle 项目,idea 一般要先 将 mavenLocal() 加入到 build.gradle 的 repositories 中,并执行gradlew build,将相关依赖下载完毕,然后再用idea 打开一次即可。

主干代码

要梳理两个事情

  1. 流程如何驱动,中间有一个分步执行 框架
  2. build 一个image,要干哪些事情,有哪些基本抽象

基本抽象

从jib-core 的代码demo 看,有一个包挺重要,那就是com.google.cloud.tools.jib.api 包括几个类,划分一下

Jib						// jib 对外暴漏的操作对象类,实质操作JibContainerBuilder
Containerizer			// 看样子啥都没干,聚合了一堆参数
JibContainer
	JibContainerBuilder
TargetImage
	DockerDaemonImage
	RegistryImage
	TarImage
SourceImage
	RegistryImage

也就是基本概念其实就四个:Jib、Containerizer、JibContainer、SourceImage 和 TargetImage。

interface SourceImage {
  	ImageConfiguration toImageConfiguration();
}
interface TargetImage {
  		ImageConfiguration toImageConfiguration();
  		BuildSteps toBuildSteps(BuildConfiguration buildConfiguration);
}

信息采集

从一个较高的角度来说,Jib 干了什么事儿呢?

Jib.from("busybox")
   .addLayer(Arrays.asList(Paths.get("helloworld.sh")), AbsoluteUnixPath.get("/")) 
   .setEntrypoint("sh", "/helloworld.sh")
   .containerize(
       Containerizer.to(RegistryImage.named("gcr.io/my-project/hello-from-jib")
                                     .addCredential("myusername", "mypassword")));

JibContainerBuilder 是 和 jib 平级的入口对象,Jib 对象的唯一作用就是引出JibContainerBuilder,之所以是Jib 而不是JibContainerBuilder 作为第一入口对象,估计是为了可读性。

但JibContainerBuilder 也不是主角,所做的一切都是为了构造BuildConfiguration,我们看下 BuildConfiguration 的成员

可以对 BuildConfiguration 涉及的所有配置列出一个层次关系

此处有几点

  1. JibContainerBuilder 是 JibContainer 的 Builder,常规来说Builder 类中会有很多属性,组后通过build 方法将其转换为Builder 目标对象。但JibContainerBuilder 估计是 属性太多了,所以其内部将属性归类,又套了一层Builder:ContainerConfiguration.Builder、BuildConfiguration.Builder。
  2. Containerizer 也像是一个 参数聚合类。换句话说,当一个流程有很多参数要配置时,你可以使用Builder 模式(甚至Builder 套Builder),也可以传入配置类。为什么要玩这么多花活儿呢? 将配置类分门别类,使其更符合语义。
  3. BuildConfiguration 聚合了各种配置类,它才是所有配置参数的集中地。此外,其不仅指定了静态的配置, 还指定了eventDispatcher 以及 ExecutorService 等对象,动静结合,使得BuildSteps 只关注 build step 本身的串联。

流程驱动

有个问题

  1. Step 如何串到一起
  2. Step 如何执行,BuildSteps.run ==> StepRunner.run 如上图

从代码呈现的调用顺序来看,Step 之间的先后顺序如下图:

相邻的两个同色表示没有依赖关系,不同色表示有依赖关系。上图只展现了相邻Step的并行度,实际执行时,并发度可以更高

看到这张图,我们埋几个疑问:

  1. 常规情况下 这种Step 可组合式的逻辑如何实现?责任链模式,pipeline
  2. jib 为什么没有选择常规方式实现?

BuildSteps 和 StepRunner 都分为构造和执行两个部分

  1. BuildSteps 分别针对 DockerDaemonImage、RegistryImage、TarImage 等TargetImage 类型,提供了对应的静态构造/工厂方法。
  2. StepsRunner 针对每一个步骤 提供了静态构造方法,但StepsRunner更像一个builder,只不过一般builder 类每次setXXX 是设置属性,StepsRunner 每次setXX 是扩充其持有的 stepsRunnable (Runnable 实现类),也就是扩充Runnable 的逻辑内容。stepsRunnable 是一个runnable 引用, 每一次setXX 都会将其指向一个更复杂的runnable 匿名实现类。

以步骤比较少的 BuildSteps.forBuildToDockerDaemon 为例

public static BuildSteps forBuildToDockerDaemon(DockerClient dockerClient, BuildConfiguration buildConfiguration) {
    return new BuildSteps(
        DESCRIPTION_FOR_DOCKER_DAEMON,
        buildConfiguration,
        StepsRunner.begin(buildConfiguration)
            .pullBaseImage()
            .pullAndCacheBaseImageLayers()
            .buildAndCacheApplicationLayers()
            .buildImage()
            .finalizingBuild()
            .loadDocker(dockerClient));
}

StepsRunner 部分实现如下

public class StepsRunner {
  	private final Steps steps = new Steps();	// 此处的steps 就是一个holder,StepsRunner 设定某个Step时,用以检查其依赖的前置Step 是否已被设置
	private Runnable stepsRunnable = () -> {};
	public StepsRunner pullBaseImage() {
		// 这个匿名runnable 干了两件事:1. 给steps成员赋值 2. PullBaseImageStep 构造方法会触发 Step 的执行
    	return enqueueStep(() -> steps.pullBaseImageStep = new PullBaseImageStep(...));
  	}
	private StepsRunner enqueueStep(Runnable stepRunnable) {
	    Runnable previousStepsRunnable = stepsRunnable;
	    // 扩容一个runnable 逻辑
	    stepsRunnable =
	        () -> {
	          previousStepsRunnable.run();
	          stepRunnable.run();
	        };
	    stepsCount++;
	    return this;
	}
}

注意 每一个 XXStep 都是一个 AsyncStep 实现, new PullBaseImageStep(...) 便触发了该Step的实际执行。

那么问题来了,既然是AsyncStep,若是依赖 前置Step的执行结果,而前置Step 还未执行完毕怎么办?每一个AsyncStep 的大致组成是

class xxStep implements AsyncStep, Callable{ private 完成本Step所需基本属性 private 依赖Step private final ListenableFuture listenableFuture; xxStep(基本属性,依赖Step){
 		赋值code
 		// 依赖任务执行完毕后,执行本Step 的call 方法
 		listenableFuture = Futures.whenAllSucceed(
                依赖Step.getFuture(),
                依赖Step.getFuture())
            .call(this, listeningExecutorService);
 		}
 		public XX call() throws ExecutionException{...}
 	}

最有意思的部分就是, 本来十几个step 具有复杂的依赖关系,有的需要同步执行,有的可以异步执行。而通过代码的腾挪, 表面调用起来却是平铺直叙的。

从另一个角度说,代码调用可以是顺序的,但业务不是顺序的。代码呈现的感觉跟实际的执行 不是一回事(也可以说,我们以前的方法太笨了)。

回顾下流程驱动

AsyncStep 接口官方注释:Holds the future for an asynchronously-running step. Implementations should:

  1. Be immutable
  2. Construct with the dependent AsyncSteps and submit a Callable to the ListeningExecutorService to run after all its dependent AsyncSteps (for example,by using Futures.whenAllSucceed)
  3. Have getFuture return the submitted future

也就是说,在AsyncStep 实现类的构造方法中,并已经有了以下逻辑

  1. 等待依赖的Step 执行完毕
  2. 实现类自己是一个Callable,将自己提交给listeningExecutorService,使其执行自己的call 方法。换句话,实现类的call 方法被执行时,所有的依赖Step 已经执行完毕了。

也就是BuildSteps.run ==> StepsRunner.run ==> runnable.run,runnable.run 的本质是

{
	new XXStep();
	new XXStep();
	new XXStep(buildConfiguration,dependent AsyncSteps, ListeningExecutorService)
	...
}

所有的Step 都是异步执行,但因为持有了dependent AsyncSteps 的应用,造成了半同步半异步的效果。

从这个角度看,BuildSteps 和 StepsRunner 的分工还蛮合理的,一个对象只干一点事情

  1. BuildSteps 负责 根据上层业务 指定 需要的Step,跟业务关系比较大
  2. StepsRunner 负责 将Step 组装在一起,并指明Step 的依赖关系(依赖关系本身与业务无关)
  3. runnable.run 负责实际的驱动执行

系统设计的一些体会 提到:要分得清楚访问代码、业务代码、存储代码、胶水代码各自应在哪些层级,它们应该是什么角色。在这里,所有Step 串行调用异步执行是本质(异步执行有调用线程和执行线程之分,所以串行调用和异步执行不冲突,BuildSteps 和 StepsRunner 的静态构造方法和Builder 模式是访问或胶水代码,提高了可读性。

每次new XXStep()可以理解为另起线程 执行一个Step。就像ExecutorService.submit(()-> System.out.println("run in new thread")) 是一样的。

再换一个角度说,我们看下 rxnetty 的一些代码,充分体现“程序=逻辑+控制”,逻辑与控制的分离。

RxNetty.createHttpGet("http://localhost:8080/error")
               .flatMap(response -> response.getContent())
               .map(data -> "Client => " + data.toString(Charset.defaultCharset()))
               .toBlocking().forEach(System.out::println);

在这个例子中,我直觉上的实现是不同的 TargeImage 对应一个Step数组,BuildSteps.run 就是 循环执行ExecutorService.submit(step)在这个步骤中,每个Step 是客体,等着被构造、被初始化、被执行。而jib 则是将ExecutorService 作为Step的成员,Step 有着更强的把控力, 对外也隐藏了异步的感觉。优劣还需进一步体会。

和maven 集成

博客园首页联系订阅管理 随笔 - 90 文章 - 0 评论 - 234 Maven提高篇系列之(六)——编写自己的Plugin

mvn compile jib:build 触发 BuildImageMojo execute 方法执行

从Jib 中学到的

  1. jib 重度使用了Builder 模式, 还Builder 套Builder(Builder 分层),本质是解决 当配置项过多时,通过将配置归类等方式 使得框架入口更易懂
  2. 当一个流程有多个Step

    1. 如何聚合这些Step
    2. 若是支持Step 异步执行的话,如何处理它们之间的依赖关系
  3. 摸清代码的意图,是理解源码的第一步

一些实践

以jib-demo 项目为例,执行

mvn com.google.cloud.tools:jib-maven-plugin:0.10.1:build -Djib.from.image=harbor.test.xxx.com/common/runit-jdk8-tomcat8 -Djib.from.auth.username=xx -Djib.from.auth.password=xx -Djib.to.image=harbor.test.xxx.com/test/jib-demo:20181206-154143 -Djib.to.auth.username=xx -Djib.to.auth.password=xx -f=pom.xml -Djib.useOnlyProjectCache=true -Djib.container.appRoot=/usr/local/tomcat/webapps/jib-demo

输出为:

[INFO] Getting base image harbor.test.xx.com/common/runit-jdk8-tomcat8...
[INFO] Building dependencies layer...
[INFO] Building resources layer...
[INFO] Building classes layer...

如果jib-demo 依赖一些snapshots jar,输出为

[INFO] Getting base image harbor.test.xxx.a.com/common/runit-jdk8-tomcat8...
[INFO] Building dependencies layer...
[INFO] Building snapshot dependencies layer...
[INFO] Building resources layer...
[INFO] Building classes layer...

如果我们分别查看 docker history harbor.test.xx.com/test/jib-demo:20181206-154143 以及 docker history harbor.test.xx.com/common/runit-jdk8-tomcat8 会发现两者大部分相似,只有最后的三个部分不同

[root@docker1 ~]# docker history harbor.test.xx.com/test/jib-demo:20181206-172214
IMAGE               CREATED             CREATED BY                                      SIZE                COMMENT
8317485ce8ec        48 years ago        jib-maven-plugin:0.10.1                         846B                classes
<missing>           48 years ago        jib-maven-plugin:0.10.1                         5.6kB               resources
<missing>           48 years ago        jib-maven-plugin:0.10.1                         6.25MB              dependencies
<missing>           3 days ago          /bin/sh -c chmod +x /etc/service/tomcat/run     406B		

这正是jib 在harbor.test.xx.com/common/runit-jdk8-tomcat8 之上添加的dependencies 、resources 和 classes layer。

个人微信订阅号