技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


分布式计算系统的那些套路

2018年06月07日

简介

参见Spark Stream 学习 中对spark stream 和storm 对比一节,有以下几点:

  1. 分布式计算系统,都是用户以代码的方式预定义好计算逻辑,系统将计算 下发到各个节点。这一点都是一样的,不同处是对外提供的抽象不同。比如spark的rdd.filter(function1).map(function2),而在storm 中则可能是 两个bolt
  2. 任务分片:有的计算 逻辑在一个节点即可执行完毕,比如不涉及分区的spark rdd,或分布式运行一个shell。有的计算逻辑则 拆分到不同节点,比如storm和mapreduce。此时系统就要做好 调度和协调。

常规业务系统也是分布式系统

最近研究一个系统设计方案,学习spark、storm等,包括跟同事交流,有以下几个感觉

  1. 我们平时的系统其实也是分布式系统,若是归纳起来, 很多做法跟分布式系统差不多。比如你通过jdbc 访问mysql,spark 也是,spark rdd 做数据处理,我们又何尝不是。因此,特定的业务上,也没必要一定套spark、storm这些,系统的瓶颈有时也不是 spark、storm 可以解决的。
  2. 笔者以前熟悉的项目,都是一个个独立的节点,节点是按功能划分的,谈不上主次,几个功能的节点组合形成架构。分布式系统也包括多个节点,但通常有Scheduler和Executor,业务功能都由Executor 完成,Scheduler 监控和调度Executor。
  3. spark、storm 这些系统 一个很厉害的地方在于,抽象架设在分布式环境下。比如spark 的rdd,storm的topology/spout/bolt 这些。笔者以前的业务系统也有抽象,但抽象通常在单机节点内。
  4. 部署方式上,也跟笔者熟悉的tomcat、springboot jar 有所不同

    1. 代码本身是一个进程,即定了main 函数
    2. 通常有一个额外的提交工作比如spark-submit 等
  5. JStorm概叙 & 应用场景 中有一句话:

    • 从应用的角度,JStorm应用是一种遵守某种编程规范的分布式应用。
    • 从系统角度, JStorm是一套类似MapReduce的调度系统。
    • 从数据的角度,JStorm是一套基于流水线的消息处理机制。
  6. 既然大致差不多,通常也可以用storm 来优化甚至 替换 业务系统的一些设计。比如storm 确实 减少或隐藏了 数据流转中的序列化、失败重试等问题。

分布式系统也有点常规系统的意思

  1. 在storm中, Topology 的定义是一个Thrift结构,并且Nimbus 就是一个Thrift 服务

计算 与 数据

  1. 计算与数据 不在一个地方,比如常规业务系统,很少业务和数据库是同一台机器
  2. 计算和数据在一起

    • 计算跟着数据走,比如hadoop、spark等,当然,必要的时候数据还得挪挪窝。
    • 数据跟跟着计算走,比如storm。这也是为什么,我们不建议在storm 中调用rpc,因为这样 就又是将 storm 退化为常规业务系统。
    • 数据和计算放在一起,这是性能最高的方式。不是通过rpc 去各地强拉数据源,而是将各路数据推向 同一个位置,计算只管 处理数据即可。

学习路径

学习分布式应用系统的路径最好是

  1. 一个简单的任务分发系统。将一个可执行文件、main函数 下发到一台 特定主机并执行。
  2. 下发代码, 上一点是下发main函数,工作节点收到后直接另起进程运行就行了。下发代码即,工作节点另起 线程执行。这其实跟rpc 差不多,只是rpc 事先定义好了函数和接口,逻辑比较受限。
  3. 监控任务节点、可执行任务运行监控、重启等
  4. 下发一个复杂任务,这个任务需要多个任务节点 协作执行,这需要任务节点间通信等
  5. 学习storm,相对通用的复杂任务抽象,高效的节点间通信机制等
  6. 学习hadoop,节点间通信 直接成了 读写分布式文件系统,使得对外抽象得以简化。
  7. 学习spark,节点间 通信直接成了“内存复制”,并利用函数式思想,简化了对外api

将计算异地执行

huangll99/DistributedTask

类结构

com.hll.dist
	common
		Constants
		Context
	io
		InputFormat
		OutputFormat
		DefaultInputFormat
		DefaultOutputFormat
	scheduler
		Runner
		WorkerClient
		WorkerRunnable
		WorkerServer
	task
		ProcessLogic
		TaskProcessor
	userapp
		UserApp
		WordCount

有以下几点

  1. 该项目只实现了 java 代码传输和远程执行
  2. WorkerClient 发送数据,WorkerServer 接收数据并执行
  3. WorkerClient 发送了三个数据

    1. jar包(在实际的业务中,代码通常依赖很多第三方jar)
    2. conf 数据,此处是一个hashMap
    3. 启动命令:java -cp xx/job.jar com.hll.dist.task.TaskProcessor
  4. WorkerServer 是一个socket server

    1. 接收jar 包存在本地
    2. 接收 conf,以文件形式存在本地
    3. 现在,WorkerServer 所在节点 具备了 可执行文件及 配置数据。
    4. 接收命令, Process process = Runtime.getRuntime().exec(command); 另起进程 执行java -cp xx/job.jar com.hll.dist.task.TaskProcessor

TaskProcessor 逻辑

  1. 根据约定目录 读取conf,并反序列化为 HashMap
  2. 从conf 中读取输入源 配置,并实例化 输入源

     Class<?> inputFormatClass = Class.forName(conf.get(Constants.INPUT_FORMAT));
     InputFormat inputFormat= (InputFormat) inputFormatClass.newInstance();
     	inputFormat.init(context);
    
  3. 从conf 中读取 逻辑类名,也就是WordCount,并实例化
  4. 驱动输入源 读取数据,并调用 逻辑类执行

    while (inputFormat.hasNext()){ int key = inputFormat.nextKey(); String value = inputFormat.nextValue(); processLogic.process(key,value,context); }
  5. 从conf 中读取输出配置,并实例化 输出
Class<?> outputFormatClass = Class.forName(conf.get(Constants.OUTPUT_FORMAT));
	OutputFormat outputFormat= (OutputFormat) outputFormatClass.newInstance();
   	 	outputFormat.write(context);
  1. 退出

该项目是为了demo 展示的一个特例,从中可以看到

  1. worker 在demo 中只是一个 socket 服务端,socket handler 的逻辑逻辑 就是 接收文件和 Runtime.exec 启动子进程。从这个角度看,这与web request ==> web server ==> rpc service) 并无不同。
  2. WorkClient 向 worker 节点 传输了 jar 文件、配置文件和 运行指令。worker 节点 有输入输出、有配置、有计算逻辑(jar)
  3. 子进程 的计算逻辑 从代码上 分为两部分,业务逻辑抽取为wordcount。驱动逻辑则负责外围的输入、输出、Context 封装等工作。(以前一直在困惑 如何将wordcount交付给 节点执行,现在看,节点运行的 根本不是wordcount本身,wordcount 支持其中一环
  4. conf 在这里像是一个dsl文件,worker 节点 根据conf 这个dsl 文件加载数据、加载类(计算逻辑) 执行即可

在实践中

  1. 感觉无需 向worker 节点发送完整jar,对于特定业务,只需将wordcount.class 及其依赖jar 发往 worker 节点即可。
  2. 在分布式环境下,容错、通信等都是通用的,用户只需关注 数据的处理逻辑(也就是wordcount)。从某种角度来说,worker 节点准备好 class 运行的上下文(输入,输出和线程驱动),驱动节点只要告知 类名即可 驱动业务执行。从分布式业务中暴露 几个业务逻辑 与 单机环境下暴露业务逻辑(比如netty),并无不同之处。

节点之间的协作

基于上一节,我们设想下 类似mapreduce的 效果如何实现。一个节点运行map,然后另一个节点执行reduce,最后输出结果。

简单点,不考虑容错、健壮及通信、运行效率

  1. 驱动节点 与 jobTrack 交互,获知在哪个机器上执行 map,哪个机器上 执行reduce
  2. 将 conf、map.class 及其 依赖jar 发往 worker 节点,运行完毕后,向驱动节点 汇报结果。
  3. 驱动节点同时命令 map 的worker 节点将map 结果 发往 reduce worker 节点,驱动节点将conf、reduce.class 及其依赖jar 发往 worker 节点,运行完毕后,向驱动节点 汇报结果。

后续 笔者会根据 storm 等源码的阅读 继续重试该文档,包括但不限于

  1. 通信方式
  2. 容错方式
  3. 监控