技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


ThreadLocal小结

2014年09月02日

前言

今年四月份面阿里,前一阵子面美团,一说JAVA基础,都会提到ThreadLocal,看来一句“多线程这方面做的不多”是不会让面试官客气的,好在亡羊补牢,为时未晚,在本文中我来谈谈我对ThreadLocal的理解。 本文的很多观点来自《深入理解java虚拟机》以及《java特种兵》。

线程安全

我们很难想象在计算机的世界,程序执行时,被不停地中断,共享的数据可能会被修改和变“脏”。为保证程序的正确性,通常我们会想到,确保共享数据在某一时刻只能被一个线程访问。一个常用手段便是“互斥”,具体到java代码,通常是使用synchronized关键字。“互斥”后,线程访问是安全了,但并发执行的效率下降了,怎么办?

“互斥”之所以会引起效率下降,是因为就解决“线程安全”这个问题而言,它太“重量级”了(或者说,粒度太大了),考虑的太过直接和全面。比如,线程A和线程B共享数据data,线程B访问data时,需要先申请锁,但发现锁已经“锁住”,怎么办?

  1. 挂起线程B。

    然而,Java线程通常由内核线程实现,线程的挂起和切换等需要系统进行用户态和内核态的切换,太“费劲儿”了。而线程访问data的操作可能耗时很短,为此挂起线程会引起一些浪费。

  2. 使用读写锁,读操作之间是不互斥的。
  3. 线程B发现数据“锁住了”,就空转一下,等一会儿再试试可不可以访问。(这完全就是另外一种并发编程模型了,基于这个模型,也产生了一系列的组件,比如队列等)
  4. 在某些场景下,可以让线程A和线程B都保有一份data,就可以去掉竞争,“以空间换时间”。netty中就实现了一个基于threadlocal的轻量级对象池。对于common pool来说,每次请求对象要进行线程安全处理。而netty 的pool area则是每个线程先维护一个小对象池,每次线程先去自己的对象池中请求对象,不够了,再去线程公用的对象池里拿。线程的对象池和线程公用的对象池组成了netty的对象池。

因此针对一些具体的使用场景,我们放宽要求甚至不采用互斥,也能达到“线程安全”,同时在效率上有所提高。

线程原生的局部变量

以上是从线程安全的角度出发,那么从线程本身角度看,线程操作时,往往需要一些对象(或变量),这些对象只有这个线程才可以使用。Java在语法层面没有提供线程的“局部变量(成员变量)” 这个支持,当然,我们可以变通一下:

class MyThread extends Thread{
    int abc;	//	我们自定义的局部变量
    public void run(){xxx}
}

其实为实现这个特性,除了我们自己继承Thread类以外,观察Java Thread类源码,可以发现其有一个ThreadLocalMap成员。我们可以揣测,开发Java的那些大咖们估计我们会有这样的需求,但不知道我们会需要什么样的成员变量,所以预留这样一个“容器”,留给我们来存储自定义成员变量。

//	Thread类部分源码
public class Thread implements Runnable {  
    ThreadLocal.ThreadLocalMap threadLocals= null ;  
	xxx;
}  

threadLocals是Thread的default类型的成员,ThreadLocal跟Thread类在一个包下,所以在ThreadLocal类中可以Thread.currentThread().threadLocals来操作threadLocals成员。

threadLocals(是一个map) ==> <ThreadLocal1,value1>
                           <ThreadLocal2,value2>
                           <ThreadLocal3,value3>

ThreadLocal有以下方法:

set(v){
    当前线程.threadlocals.put(this,v);
}
get(v){
    当前线程.threadlocals.get(this);
}
remove(v){
    当前线程.threadlocals.remove(this);
}

这里,有一个跟寻常开发习惯不同的地方,一般,一个类的成员变量由这个类自己负责初始化,而在Thread类中,由ThreadLocal类负责对其ThreadLocalMap成员初始化。由于一个ThreadLocal包装一个value,所以ThreadLocal对象也可以和value形成一对一映射。

换句话说,变量有类作用域,对象作用域和线程作用域(作为Thread类的成员,或者被其成员引用,就具备了线程作用域)。只要将一个变量放在线程的threadLocals成员中,这个变量便有了线程作用域。与类作用域和对象作用域不同,这两种作用域的变量直接用关键字注明即可。一个变量要想拥有线程作用域,也就是要进入threadLocals这个map中,必须通过ThreadLocal类的操作(ThreadLocal类和Thread类一个包,可以直接操作threadLocals成员),同时还要一个key搭伙,ThreadLocal类对象也可以代劳。

使用模式

换个方式看待

class A{
    private String var1;
    private ThreadLocal var2;
    public void func(){
        opt var1;
        opt var2;
    }
}

《spring权威指南》中曾经有一段非常精彩:面向对象设计其实也是一种模块化的方法,它把相关的数据及其处理方法放在了一起。与单纯的使用子函数进行封装相比,面向对象的模块化特性更完备,它体现了计算的一个基本原则——让计算尽可能靠近数据(这都能联系到一起)。这样一来,代码组织起来就更加整齐和清晰,一个类就是一个基本的模块。

以上述代码为例,从模块化的角度看,func方法可以操作var1和var2,对象将数据和操作数据的方法结合在了一起。但线程本身只是执行方法的(无论是C语言还是java语言,初始化一个线程本质上都是赋给它一个函数),线程割裂了这种结合。按照操作系统的说法,线程之间共享进程的资源,代码段共享,而数据段则只有一份。如果要每个线程都有自己的”数据段”,就要将变量Thread local化。

变相传参

变相传递参数的一个例子(实现变量在同一线程内,跨类使用)。MyContext在此处作为thread local变量的操作对象。

MyContext{
    // 既然numThreadLocal作为线程作用域存在,那么ThreadLocal对象的作用域也必须只大不小,所以就弄成静态的了。
    public static ThreadLocal<Integer> numThreadLocal = new ThreadLocal<Integer>();
    public void set(Integer num){
        numThreadLocal.set(num);
    }
    public Integer get(){
        return numThreadLocal.get();
    }
    public void close(){
        numThreadLocal.remove();
    }
}
MyComponent{
    public void say(){
        System.out.println("num ==> " + MyContext.get())
    }
}
Main{
    public static void main(String[] args){
        for(int i=0;i<10;i++){
            final int num = i;
            new Thread(){
                public void run(){
                    MyContext.set(num);
                    new MyComponent().say();
                    MyContext.close();
                }
            }.start();
        }
    }
}

使用ThreadLocal时,要注意释放资源,对于一个正常的线程,线程运行结束后,ThreadLocal数据会自动释放。而对于线程池提供的线程,有时很长时间都不会释放(线程是被复用的),ThreadLocal变量的积累会导致线程占用资源过多。

在这个例子中,如果将MyContext按如下方式书写:

MyContext{
    public static Integer num = new Integer();
    public void set(Integer num){
        this.num = num;
    }
    public Integer get(){
        return this.num;
    }
}

那么输出的内容,就很有可能相互干扰了。

笔者碰到的一个thread local使用实例是:公司有一个通用的后台系统,负责通用的账号、权限管理等。每个人自己开发的业务系统,接入通用后台系统。通常,业务系统要记录操作人员的change log,即业务系统要获取操作人员id。如何实现呢?业务系统接入后台系统filter,在filter中获取用户id,并写入thread local中。随后,在业务系统的任意位置,即可通过工具类,从thread local获取到用户id信息。

引用

严重推荐这篇文章: Java中ThreadLocal模拟和解释