技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


《Container-Networking-Docker-Kubernetes》笔记

2018年10月11日

简介

Nginx 公司的 Michael Hausenblas 发布了一本关于 docker 和 kubernetes 中的容器网络的小册子,本文是其读书笔记。

容器网络仍然非常年轻,年轻就意味着多变,笔者之前博客总结几套方案都落伍了, 这更加需要我们对容器网络有一个梳理。

service discovery and container orchestration are two sides of the same idea.

建议先看下程序猿视角看网络

container networking stack

分层 包括哪些 作用
the low-level networking layer networking gear(网络设备),iptables,routing,ipvlan,linux namespaces 这些技术已经存在很多年,我们只是对它们的使用
the container networking layer single-host bridge mode,multi-host,ip-per-container 对底层技术provide some abstractions
the container orchestration layer service discovery,loadbalance,cni,kubernetes networking marrying the container scheduler’s decisions on where to place a container with the primitives provided by lower layers.

一个 Network Namespace 的网络栈包括:网卡(Network Interface)、回环设备(Loopback Device)、路由表(Routing Table)和 iptables 规则。这句话框定了下文CNI plugin 的功能边界

多机

知乎:VXLAN vs VLAN

Virtual Extensible LAN

  1. 容器的一个诉求:To make a VM mobile you want to be able to move it’s physical location without changing it’s apparent network location.
  2. vlan 和vxlan 都是 virtual lan(局域网),但vlan 是隔离出来的,借助了交换机的支持(或者说推出太久了,以至于交换机普遍支持),vxlan 是虚拟出来的,交换机无感知。这种视角,有点像docker 与传统虚拟机的区别,隔离的好处是轻量也受交换机相关特性的限制(比如mac地址表上限)。虚拟的好处是灵活度高,但需要专门的中间组件。
  3. VXLAN与VLAN的最大区别在于,VLAN只是修改了原始的Ethernet Header,但是整个网络数据包还是原来那个数据包,而VXLAN是将原始的Ethernet Frame隐藏在UDP数据里面。经过VTEP封装之后,在网络线路上看起来只有VTEP之间的UDP数据传递,原始的网络数据包被掩盖了。
  4. 为什么构建数据中心用VXLAN?

    • VXLAN evolved as a Data Center technology,所以分析vxlan 优势时一切以 数据中心的需求为出发点。一个超大型数据中心,交换机怎么联都是有技术含量的 What is a Networking Switch Fabric
    • vlan 4096 数量限制 不是问题
    • TOR(Top Of Rack)交换机MAC地址表限制。数据中心的虚拟化给网络设备带来的最直接影响就是:之前TOR(Top Of Rack)交换机的一个端口连接一个物理主机对应一个MAC地址,但现在交换机的一个端口虽然还是连接一个物理主机但是可能进而连接几十个甚至上百个虚拟机和相应数量的MAC地址。
    • VTEP 在微服务领域有点像现在的service mesh,一个vm/container 是一个微服务,微服务只需和sevice mesh sidecar 沟通

Macvlan and IPvlan basics

Macvlan and ipvlan are Linux network drivers that exposes underlay or host interfaces directly to VMs or Containers running in the host.

  特点 ip/mac address 从交换机的视角看vlan方案
vlan A virtual LAN (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer (OSI layer 2).
each sub-interface belongs to a different L2 domain using vlan
all sub-interfaces have same mac address. 交换机要支持 vlan tag,vlan 学习参见程序猿视角看网络
Macvlan Containers will directly get exposed in underlay network using Macvlan sub-interfaces.
Macvlan has 4 types(Private, VEPA, Bridge, Passthru)
可以在vlan sub-interface 上创建 macvlan subinterface
Macvlan allows a single physical interface to have multiple mac and ip addresses using macvlan sub-interfaces.
交换机的port一般只与一个mac绑定,使用macvlan 后必须支持绑定多个 且 无数量限制
ipvlan ipvlan supports L2 and L3 mode. the endpoints have the same mac address 省mac地址
vxlan Virtual Extensible LAN (VXLAN) is a network virtualization technology that attempts to address the scalability problems associated with large cloud computing deployments.
VXLAN endpoints, which terminate VXLAN tunnels and may be either virtual or physical switch ports, are known as VXLAN tunnel endpoints (VTEPs)
  交换机无感知

CNI

The cni specification is lightweight; it only deals with the network connectivity of containers,as well as the garbage collection of resources once containers are deleted.

cni 接口规范,不是很长Container Network Interface Specification,原来技术的世界里很多规范用Specification 来描述。

对 CNI SPEC 的解读 Understanding CNI (Container Networking Interface)

  1. If you’re used to dealing with Docker this doesn’t quite seem to fit the mold. 习惯了docker 之后, 再看cni 有点别扭。原因就在于,docker 类似于操作系统领域的windows,把很多事情都固化、隐藏掉了,以至于认为docker 才是标准。
  2. The CNI plugin is responsible wiring up the container. That is – it needs to do all the work to get the container on the network. In Docker, this would include connecting the container network namespace back to the host somehow. 在cni 的世界里,container刚开始时没有网络的,是container runtime 操作cni plugin 将container add 到 network 中。

“裸机” 使用cni

Understanding CNI (Container Networking Interface)

mkdir cni
user@ubuntu-1:~$ cd cni
user@ubuntu-1:~/cni$ curl -O -L https://github.com/containernetworking/cni/releases/download/v0.4.0/cni-amd64-v0.4.0.tgz
user@ubuntu-1:~/cni$ tar -xzvf cni-amd64-v0.4.0.tgz
user@ubuntu-1:~/cni$ ls
bridge  cni-amd64-v0.4.0.tgz  cnitool  dhcp  flannel  host-local  ipvlan  loopback  macvlan  noop  ptp  tuning

创建一个命名空间

sudo ip netns add 1234567890

调用cni plugin将 container(也就是network namespace) ADD 到 network 上

cat > mybridge.conf <<"EOF"
{
    "cniVersion": "0.2.0",
    "name": "mybridge",
    "type": "bridge",
    "bridge": "cni_bridge0",
    "isGateway": true,
    "ipMasq": true,
    "ipam": {
        "type": "host-local",
        "subnet": "10.15.20.0/24",
        "routes": [
            { "dst": "0.0.0.0/0" },
            { "dst": "1.1.1.1/32", "gw":"10.15.20.1"}
        ]
    }
}
EOF

sudo CNI_COMMAND=ADD CNI_CONTAINERID=1234567890 CNI_NETNS=/var/run/netns/1234567890 CNI_IFNAME=eth12 CNI_PATH=`pwd` ./bridge < mybridge.conf

mybridge.conf 描述了network 名为mybridge的配置,然后查看1234567890 network namespace 配置

sudo ip netns exec 1234567890 ifconfig
eth12     Link encap:Ethernet  HWaddr 0a:58:0a:0f:14:02
          inet addr:10.15.20.2  Bcast:0.0.0.0  Mask:255.255.255.0
          inet6 addr: fe80::d861:8ff:fe46:33ac/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:16 errors:0 dropped:0 overruns:0 frame:0
          TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:1296 (1.2 KB)  TX bytes:648 (648.0 B)
 
user@ubuntu-1:~/cni$ sudo ip netns exec 1234567890 ip route
default via 10.15.20.1 dev eth12
1.1.1.1 via 10.15.20.1 dev eth12
10.15.20.0/24 dev eth12  proto kernel  scope link  src 10.15.20.2

这个例子并没有什么实际的价值,但将“cni plugin操作 network namespace” 从cni繁杂的上下文中抽取出来,让我们看到它最本来的样子。从这也可以看到,前文画了图,整理了脑图,但资料看再多,都不如实操案例来的深刻。才能不仅让你“理性”懂了,也能让你“感性”懂了

Using CNI with container runtime

Using CNI with Docker net=none 创建的容器:sudo docker run --name cnitest --net=none -d jonlangemak/web_server_1,为其配置网络 与 上文的为 network namespace 配置网络是一样的。

I mentioned above that rkt implements CNI. In other words, rkt uses CNI to configure a containers network interface.

  1. network 要有一个json 文件描述,这个文件描述 放在rkt 可以识别的/etc/rkt/net.d/ 目录下
  2. sudo rkt run --interactive --net=customrktbridge quay.io/coreos/alpine-sh 便可以创建 使用customrktbridge network 的容器了。类似的,是不是可以推断docker network create 便是 将 network json 文件写入到相应目录下
  3. 表面上的sudo rkt run --interactive --net=customrktbridge quay.io/coreos/alpine-sh 关于网络部分 实际上 是 sudo CNI_COMMAND=ADD CNI_CONTAINERID=1234567890 CNI_NETNS=/var/run/netns/1234567890 CNI_IFNAME=eth12 CNI_PATH=pwd ./bridge < mybridge.conf 执行,要完成这样的“映射”,需要规范定义 以及 规范相关方的协作,可以从这个角度再来审视前文对CNI SPEC 的一些梳理。

笔者以前一直有一个困惑,network、volume 可以作为一个“资源”随意配置,可以是一个json的存在,尤其是network,docker network create 完了之后 就可以在docker run -net=xx 的时候使用。kubernetes 中更是 yaml 中声明一下network即可使用,是如何的背景支撑这样做? 结合源码来看 加载 CNI plugin Kubelet 会根据 network.json cmd:=exec.Command(ctx,"bridge");cmd.Run()

{
    "cniVersion": "0.2.0",
    "name": "mybridge",
    "type": "bridge",
    "bridge": "cni_bridge0",
    "isGateway": true,
    "ipMasq": true,
    "ipam": {
        "type": "host-local",
        "subnet": "10.15.20.0/24",
        "routes": [
            { "dst": "0.0.0.0/0" },
            { "dst": "1.1.1.1/32", "gw":"10.15.20.1"}
        ]
    }
}

答案就在于:我们习惯了主体 ==> 客体,比如docker早期版本,直接docker ==> container/network namespace。 而cni体系中则是runtime ==> cni plugin ==> container/network namespace。container runtime看作是一个network.json文件的“执行器”,通过json 文件找到cni plugin binary 并驱动其执行。一个network 不是一个真实实体,netowrk.json描述的不是如何创建一个网络,而是描述了如何给一个container 配置网络。

CNI 小结

有了整体的感觉时候,我们再来说

  1. 我们要为container 配置不同的网络
  2. 网络连通有不同的方案
  3. 如何将它们统一起来?

    • 基本抽象contaienr + network
    • 静态组件:container 即 network namespace ,network 定义规范
    • 动态逻辑:container runtime、orchestrator 协作规范

CNI SPEC 做了建设性的抽象,在架构设计中有指导意义:如果你自己做架构设计,你定义的接口/规范 能hold住这么繁杂的 容器插件方案么?

kubernetes networking

想给一个容器连上网,办法实在太多,就好比现实世界中给你的电脑/手机连上网一样。但作为一个通用解决方案,就不得不做一定限制,好在k8s限制不太多。Rather than prescribing a certain networking solution, Kubernetes only states three fundamental requirements:

  • Containers can communicate with all other containers without NAT.
  • Nodes can communicate with all containers (and vice versa) without NAT.
  • The IP a container sees itself is the same IP as others see it. each pod has its own IP address that other pods can find and use. 很多业务启动时会将自己的ip 发出去(比如注册到配置中心),这个ip必须是外界可访问的。 学名叫:flat address space across the cluster.

Kubernetes requires each pod to have an IP in a flat networking namespace with full connectivity to other nodes and pods across the network. This IP-per-pod model yields a backward-compatible way for you to treat a pod almost identically to a VM or a physical host(ip-per-pod 的优势), in the context of naming, service discovery, or port allocations. The model allows for a smoother transition from non–cloud native apps and environments. 这样就 no need to manage port allocation

A service provides a stable virtual IP (VIP) address for a set of pods. It’s essential to realize that VIPs do not exist as such in the networking stack. For example, you can’t ping them. They are only Kubernetes- internal administrative entities. Also note that the format is IP:PORT, so the IP address along with the port make up the VIP. Just think of a VIP as a kind of index into a data structure mapping to actual IP addresses.

k8s的service discovery 真的是 service 组件的discovery

  1. kube-proxy,给service 一个host 可访问的ip:port
  2. kube-dns/CNCF project CoreDNS,给service 一个域名
  3. Ingress,给service 一个可访问的http path

Using CNI with CRI

在 Kubernetes 中,处理容器网络相关的逻辑并不会在kubelet 主干代码里执行,而是会在具体的 CRI(CContainer Runtime Interface,容器运行时接口)实现里完成。对于 Docker 项目来说,它的CRI 实现叫作 dockershim

为什么pod中要有一个pause 容器?

Kubernetes networking 101 – Pods

all containers within a single pod share the same network namespace. 那么现在假设一个pod定义了三个容器(container1, container2, container3),你如何实现共享网络的效果呢?直接的想法:启动一个容器(比如container1),然后container2、container3 挂在container1上,但这样做有几个问题:

  1. 启动顺序无法保证,正常都是先拉到谁的镜像就先启动哪个
  2. 假设container1 挂了(比如业务代码问题),则就殃及container2, container3 。
  3. 尤其container3 还没有启动的时候,container1 挂了,那container3 怎么办呢?

the pause container servers as an anchoring point for the pod and make it easy to determine what network namespace the pod containers should join.

pause container 被称为 infrastructure container,中文有的文章简称 Infra 容器。Infra 容器一定要占用极少的资源,所以它使用的是一个非常特殊的镜像,叫作:k8s.gcr.io/pause。这个镜像是一个用汇编语言编写的、永远处于“暂停”状态的容器,解压后的大小也只有 100~200 KB 左右。