技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


线程排队

2018年12月11日

简介(持续更新)

大部分时候,我们将队列作为一种数据容器,但在并发场景下,未获得锁的线程要进入队列等待。此时线程 作为一种“执行体” 成为队列的元素。而我们以线程排队一些事情会非常有意思。

什么决定了系统的并发数量

Kubernetes架构为什么是这样的?

假设系统架构设计的时候,不考虑任何物理限制(比如机器的资源大小,带宽等),要求能并发处理 1000个请求,那么很显然,横向扩展的节点数量上限就是1000,因为就算部署了 1001个节点,在任何时候都有一个节点是处于空闲状态,部署更多的节点已经完全无法提高系统的性能。那系统的并发数量由什么决定呢?

以一个二手书交易平台为例,订单系统的理论上能够处理的并发请求(订购商品请求)数量是由什么来决定的呢?

在订单请求来了之后,根据订单请求中的购买的商品来排队,购买同一个商品的请求被放在一个队列里面,然后订单的调度系统开始从队列里面依次处理请求,每次做订单匹配的时候,都需根据当前商品的所有库存,从里面挑选一个最佳匹配的库存(比如买家和卖家距离最近)。

在实现这个系统的时候,这个队列不见得是一个消息队列,可能会是一个关系型数据库的锁,比如一个购买《乔布斯传》的订单,系统在处理的时候需要先从所有库存里面查询出《乔布斯传》的库存,将库存记录锁住,并做订单匹配且更新库存(将生成订单的库存商品设置为”不可用”状态)之后,才会将数据库锁释放,这时候所有后续购买《乔布斯传》的订单请求都在队列中等待。

也有些系统在实现的时候采用“乐观锁”,就是每次订单处理时,并不会在一开始就锁住库存信息,而是在最后一步更新库存的时候才会锁住,如果发生两个订单匹配到了同一个库存物品,那么其中一个订单处理就需要完全放弃然后重试。这两种实现方式不太一样,但是本质都是相同的。

PS:排队是肯定要排队的,只是排队的表现形式不同,或是显式队列,或是(数据库)操作系统锁队列

之所以所有购买《乔布斯传》的订单需要排队处理,是因为每一次做订单匹配的时候,需要《乔布斯传》这个商品的所有库存信息,并且最后会修改(占用)一部分库存信息的状态。在该订单匹配的场景里面,我们就把《乔布斯传》的所有库存信息叫做一个“独立资源池”,订单匹配这个“调度系统”的最大并发数量就完全取决于独立资源池的数量,也就是商品的数量。我们假设一下,如果这个二手书的商城只卖《乔布斯传》一本书,那么最后所有的请求都需要排队

传统队列

Lock-Free Queue

synchronized

Java和操作系统交互细节如果线程进入 monitorenter 会将自己放入该 objectmonitor 的 entryset 队列,然后阻塞(PS: 注意这种表述方式,是线程自己将自己加入队列,然后线程自己阻塞了自己),如果当前持有线程调用了 wait 方法,将会释放锁,然后将自己封装成 objectwaiter 放入 objectmonitor 的 waitset 队列,这时候 entryset 队列里的某个线程将会竞争到锁,并进入 active 状态,如果这个线程调用了 notify 方法,将会把 waitset 的第一个 objectwaiter 拿出来放入 entryset (这个时候根据策略可能会先自旋),当调用 notify 的那个线程执行 moniterexit 释放锁的时候, entryset 里的线程就开始竞争锁后进入 active 状态。

AQS 的排队方式

AQS4——论文学习

JUC lock - AQS - CLH queue

guava cache的 请求合并

其它

全面异步化:淘宝反应式架构升级探索 消息驱动强调无阻塞、无 callback,所以不会有线程挂在那里,不会有持续的资源消耗。同时,事件驱动或消息驱动都是异步化,而异步化会将操作系统中的队列情况显式地提升到了应用层,使得应用层可以显式根据队列的情况来进行压力负载的感知。

操作系统的内存分配、进程/线程调度、队列等显式到应用层,看起来是一个趋势。这样,应用层线程一直是(尽量)跑满的,os 单纯的根据时间片切换线程即可。

笔者个人微信订阅号