技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


Kubernetes整体结构

2018年12月31日

简介

一些体会

有时候不得不承认,一些概念可能都火了五六年了, 但在实践层面仍然是滞后。能用是不够的,好用才行。有一个大牛说过:ci/cd 和 devops 是一体两面的。比如对于java 开发来说,用物理机部署(拷贝文件、配置nginx等) 和使用k8s 发布服务一样复杂(虽说k8s可以一键发布,但理解k8s对他来说是个负担),至少前者他还懂一点。

Kubernetes何时才会消于无形却又无处不在?一项技术成熟的标志不仅仅在于它有多流行,还在于它有多不起眼并且易于使用。Kubernetes依然只是一个半成品,还远未达到像Linux内核及其周围操作系统组件在过去25年中所做到的那种“隐形”状态。

解读2018:我们处在一个什么样的技术浪潮当中?Kubernetes 还是太底层了,真正的云计算并不应该是向用户提供的 Kubernetes 集群。2014 年 AWS 推出 Lambda 服务,Serverless 开始成为热词。从理论上说,Serverless 可以做到 NoOps、自动扩容和按使用付费,也被视为云计算的未来。Serverless 是我们过去 25 年来在 SaaS 中走的最后一步,因为我们已经渐渐将越来越多的职责交给了服务提供商。——Joe Emison 《为什么 Serverless 比其他软件开发方法更具优势》

赢在orchestrator

一般orchestrator 包括但不限于以下功能:

  1. Organizational primitives,比如k8s的label
  2. Scheduling of containers to run on a ost
  3. Automated health checks to determine if a container is alive and ready to serve traffic and to relaunch it if necessary
  4. autoscaling
  5. upgrading strategies,from rolling updates to more sophisticated techniques such as A/B and canary deployments.
  6. service discovery to determine which host a scheduled container ended upon,usually including DNS support.

The unit of scheduling in Kubernetes is a pod. Essentially, this is a tightly coupled set of one or more containers that are always collocated (that is, scheduled onto a node as a unit); they cannot be spread over nodes.

  1. The number of running instances of a pod—called replicas—can be declaratively stated and enforced through controllers.
  2. The logical organization of all resources, such as pods, deployments, or services, happens through labels. label 的作用不小啊

Kubernetes is highly extensible, from defining new workloads and resource types in general to customizing its user-facing parts, such as the CLI tool kubectl (pronounced cube cuddle).

Julia Evans 系列

Reasons Kubernetes is cool

once you have a working Kubernetes cluster you really can set up a production HTTP service (“run 5 of this application, set up a load balancer, give it this DNS name, done”) with just one configuration file. 然后业务开发会说,我基于物理机虽然没有这么快,但tomcat、nginx、dns 这些都是一次就好了呀,后续的开发也是一键发布呀。k8s 优势在于:它可以横推,对开发来说部署java application 和 部署mysql 是两个事情,但对于k8s 来说,就是一个事情。

这个事情在商业上是类似,最开始都是先垂直发展,然后面横向打通。你搞电商,我搞外卖,但到最后发现物流、资金流、云计算可以打通。

Container Engine cluster

本小节主要来自对https://cloud.google.com/container-engine/docs的摘抄,有删减。

本小节主要讲了Container Engine cluster和Pod的概念

A Container Engine cluster is a group of Compute Engine instances running Kubernetes. It consists of one or more node instances, and a Kubernetes master instance. A cluster is the foundation of a Container Engine application—pods,services, and replication controllers all run on top of a cluster.

一个Container Engine cluster主要包含一个master和多个slave节点,它是上层的pod、service、replication controllers的基础。

  1. The Kubernetes master, Every cluster has a single master instance. The master provides a unified view into the cluster and, through its publicly-accessible endpoint, is the doorway(途径) for interacting with the cluster.
  2. Nodes, A cluster can have one or more node instances. These are managed from the master, and run the services necessary to support Docker containers. Each node runs the Docker runtime and hosts a Kubelet agent(管理docker runtime), which manages the Docker containers scheduled on the host. Each node also runs a simple network proxy(网络代理程序).

The master runs the Kubernetes API server, which services REST requests, schedules pod creation and deletion on worker nodes, and synchronizes pod information (such as open ports and location) with service information.

  1. 提供统一视图
  2. service REST requests
  3. 调度
  4. 控制,使得actual state满足desired state

设计理念

火得一塌糊涂的kubernetes有哪些值得初学者学习的?

  1. 声明式 VS 命令式, 声明式优点很多,一个很重要的点是:在分布式系统中,任何组件都可能随时出现故障。当组件恢复时,需要弄清楚要做什么,使用命令式 API 时,处理起来就很棘手。但是使用声明式 API ,组件只需查看 API 服务器的当前状态,即可确定它需要执行的操作。
  2. 显式的 API, Kubernetes 是透明的,它没有隐藏的内部 API。换句话说 Kubernetes 系统内部用来交互的 API 和我们用来与 Kubernetes 交互的 API 相同。这样做的好处是,当 Kubernetes 默认的组件无法满足我们的需求时,我们可以利用已有的 API 实现我们自定义的特性。
  3. 无侵入性, 我们的应用达到镜像后, 不需要改动就可以遨游在 Kubernetes 集群中。 Kubernetes 以一种友好的方式将 Secret、Configuration等注入 Pod,减少了大家的工作量,而无需重写或者很大幅度改变原有的应用代码。
  4. 有状态的移植, 比如 PersistentVolumeClaim 和 PersistentVolume

整体结构

Kubernetes架构为什么是这样的?

调整后的架构图

  1. etcd,各个组件通信都并不是互相调用 API 来完成的,而是把状态写入 ETCD(相当于写入一个消息),其他组件通过监听 ETCD 的状态的的变化(相当于订阅消息),然后做后续的处理,然后再一次把更新的数据写入 ETCD。
  2. api server,各个组件并不是直接访问 ETCD,而是访问一个代理,这个代理是通过标准的RESTFul API,重新封装了对 ETCD 接口调用,除此之外,这个代理还实现了一些附加功能,比如身份的认证、缓存等
  3. Controller Manager 是实现任务调度的
  4. Scheduler 是用来做资源调度的

一位大牛的整理