技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


docker中涉及到的一些linux知识

2016年12月02日

简介

namespace

来源

命名空间最初是用来解决命名唯一性问题的,即解决不同编码人员编写的代码模块在合并时可能出现的重名问题。

传统上,在Linux以及其他衍生的UNIX变体中,许多资源是全局管理的。这意味着进程之间彼此可能相互影响。偏偏有这样一些场景,比如一场“黑客马拉松”的比赛,组织者需要运行参赛者提供的代码,为了防止一些恶意的程序,必然要提供一套隔离的环境,一些提供在线持续集成服务的网站也有类似的需求。

我们不想让进程之间相互影响,就必须将它们隔离起来,最好都不知道对方的存在。而所谓的隔离,便是隔离他们使用的资源(比如),进而资源的管理也不在是全局的了。

原理

Namespaces in operation, part 1: namespaces overview 是一个介绍 namespace 的系列文章,要点如下:

  1. The purpose of each namespace is to wrap a particular global system resource in an abstraction that makes it appear to the processes within the namespace that they have their own isolated instance of the global resource. 对global system resource的封装
  2. there will probably be further extensions to existing namespaces, such as the addition of namespace isolation for the kernel log. 将会有越来越多的namespace

namespace 简单说,就是进程的task_struct 以前都直接 引用资源id(各种资源或者是index,或者 是一个地址),现在是进程 task struct ==> nsproxy ==> 资源表(操作系统就是提供抽象,并将各种抽象封装为数据结构,外界可以引用)

Linux内核的namespace机制分析

struct task_struct {	
	……..		
	/* namespaces */		
	struct nsproxy *nsproxy;	
	…….
}
struct nsproxy {
     atomic_t count;	// nsproxy可以共享使用,count字段是该结构的引用计数
     struct uts_namespace *uts_ns;
     struct ipc_namespace *ipc_ns;
     struct mnt_namespace *mnt_ns;
     struct pid_namespace *pid_ns_for_children;
     struct net             *net_ns;
};

What is the relation between task_struct and pid_namespace?

Separation Anxiety: A Tutorial for Isolating Your System with Linux Namespaces 该文章 用图的方式,解释了各个namespace 生效的机理,值得一读。其实要理解的比较通透,首先就得对 linux 进程、文件、网络这块了解的比较通透。此外,虽说都是隔离,但他们隔离的方式不一样,比如root namespace是否可见,隔离的资源多少(比如pid只隔离了pid,mnt则隔离了root directory 和 挂载点,network 则隔离网卡、路由表、端口等所有网络资源),隔离后跨namespace如何交互

  1. 进程和 namespace 通常是多对多关系
  2. 进程是树结构的,每个namespace 理解的 根不一样,pid root namespace 最终提供完整视图

  3. mount 也是有树的,每个namespace 理解的根 不一样, 挂载点目录彼此看不到. task_struct ==> nsproxy 包括 mnt_namespace。

     struct mnt_namespace {
         atomic_t		count;
         struct vfsmount *	root;///当前namespace下的根文件系统
         struct list_head	list; ///当前namespace下的文件系统链表(vfsmount list)
         wait_queue_head_t poll;
         int event;
     };
     struct vfsmount {
         ...
         struct dentry *mnt_mountpoint;	/* dentry of mountpoint,挂载点目录 */
         struct dentry *mnt_root;	/* root of the mounted tree,文件系统根目录 */
         ...
     }
    

    Mount Point DefinitionA mount point is a directory in the currently accessible filesystem on which an additional filesystem is mounted, 对于一个linux 来说,一般顶层rootfs,然后加载/etc/fstab 加载那些默认的挂载点。

    只是单纯一个隔离的 mnt namespace 环境是不够的,还要”change root”,参见《自己动手写docker》P45

  4. network namespace 倒是没有根, 但docker 创建 veth pair,root namespace 一个,child namespace 一个。此外 为 root namespace 额外加 iptables 和 路由规则,为 各个ethxx 提供路由和数据转发,并提供跨network namesapce 通信。

Mount Point DefinitionA mount point is a directory in the currently accessible filesystem on which an additional filesystem is mounted. 对于一个linux 来说,一般顶层rootfs,然后加载/etc/fstab 加载那些默认的挂载点

从mnt 和 network namespace 可以看到, 一个可用的 容器主要 是一个隔离的 环境,其次还需要 docker 进行 各种微操以补充。

《深入剖析kubernetes》:用户运行在容器里的应用进程,跟宿主机上的其他进程一样,都由宿主机操作系统统一管理,只不过这些被隔离的进程拥有额外设置过的Namespace 参数。而docker 在这里扮演的角色,更多的是旁路式的辅助和管理工作。

cgroups

使用cgroups控制进程cpu配额

cgroups Control Group,原来叫process group,是分配资源的基本单位。cgroup 具备继承关系,因此可以组成 hierarchy。子系统(subsystem),一个子系统就是一个(只是一个)资源控制器,子系统必须附加(attach)到一个hierarchy上才能起作用

从操作上看:

  1. 可以创建一个目录(比如叫cgroup-test), mount -t cgroup -o none cgroup-test ./cgroup-test cgroup-test 便是一个hierarchy了,一个hierarchy 默认自动创建很多文件

     - cgroup.clone_children
     - cgroup.procs
     - notify_on_release
     - tasks
    

你为其创建一个子文件cgroup-test/ cgroup-1,则目录变成

	- cgroup.clone_children
	- cgroup.procs
	- notify_on_release
	- tasks
	- cgroup-1
		- cgroup.clone_children
		- cgroup.procs
		- notify_on_release
		- tasks

往task 中写进程号,则标记该进程 属于某个cgroup。

注意,mount时,-o none 为none。 若是 mount -t cgroup -o cpu cgroup-test ./cgroup-test 则表示为cgroup-test hierarchy 挂载 cpu 子系统

- cgroup.event_control
- notify_on_release
- cgroup.procs
- tasks

- cpu.cfs_period_us
- cpu.rt_period_us
- cpu.shares
- cpu.cfs_quota_us
- cpu.rt_runtime_us
- cpu.stat

cpu 开头的都跟cpu 子系统有关。可以一次挂载多个子系统,比如-o cpu,mem

linux网桥

本文所说的网桥,主要指的是linux 虚拟网桥。

A bridge transparently relays traffic between multiple network interfaces. In plain English this means that a bridge connects two or more physical Ethernets together to form one bigger (logical) Ethernet

<td colspan=2>netif_receive_skb/dev_queue_xmit</td>
network layer iptables rules
func netif_receive_skb/dev_queue_xmit
data link layer eth0 br0
eth1 eth2
func rx_handler/hard_start_xmit rx_handler/hard_start_xmit rx_handler/hard_start_xmit
phsical layer device driver device driver device driver

通俗的说,网桥屏蔽了eth1和eth2的存在。正常情况下,每一个linux 网卡都有一个device or net_device struct.这个struct有一个rx_handler。

eth0驱动程序收到数据后,会执行rx_handler。rx_handler会把数据包一包,交给network layer。从源码实现就是,接入网桥的eth1,在其绑定br0时,其rx_handler会换成br0的rx_handler。等于是eth1网卡的驱动程序拿到数据后,直接执行br0的rx_handler往下走了。所以,eth1本身的ip和mac,network layer已经不知道了,只知道br0。

br0的rx_handler会决定将收到的报文转发、丢弃或提交到协议栈上层。如果是转发,br0的报文转发在数据链路层,但也会执行一些本来属于network layer的钩子函数。也有一种说法是,网桥处于forwarding状态时,报文必须经过layer3转发。这些细节的确定要通过学习源码来达到,此处先不纠结。

读了上文,应该能明白以下几点。

  1. 为什么要给网桥配置ip,或者说创建br0 bridge的同时,还会创建一个br0 iface。
  2. 为什么eth0和eth1在l2,连上br0后,eth1和eth0的连通还要受到iptables rule的控制。
  3. 网桥首先是为了屏蔽eth0和eth1的,其次是才是连通了eth0和eth1。

2018.12.3 补充:一旦一张虚拟网卡被“插”在网桥上,它就会变成该网桥的“从设备”。从设备会被“剥夺”调用网络协议栈处理数据包的资格,从而“降级”成为网桥上的一个端口。而这个端口唯一的作用,就是接收流入的数据包,然后把这些数据包的“生杀大权”(比如转发或者丢弃),全部交给对应的网桥。