技术

如何使用RedisTemplate访问Redis数据结构 MySQL重要知识点 OAuth2认证授授权流程 分布式锁 服务调用 MQ的介绍 SpringCloud 使用链 Eureka 的点对点通信 介绍Eureka RabbitMQ与其它MQ的对比 Springboot 启动过程分析 Springboot 入门 Linux内存管理 自定义CNI IPAM 扩展Kubernetes 副本一致性 spring redis 源码分析 kafka实践 spring kafka 源码分析 Linux进程调度 让kafka支持优先级队列 Codis源码分析 Redis源码分析 C语言学习 《趣谈Linux操作系统》笔记 Kubernetes安全机制 jvm crash分析 Prometheus 学习 Kubernetes监控 Kubernetes 控制器模型 容器日志采集 容器狂占cpu怎么办? 容器狂打日志怎么办? Kubernetes资源调度-scheduler 时序性数据库介绍及对比 influxdb入门 maven的基本概念 《Apache Kafka源码分析》——server Kubernetes objects之编排对象 源码分析体会 自动化mock AIOps说的啥 从DevOps中挖掘docker的价值 《数据结构与算法之美》——算法新解 Kubernetes源码分析——controller mananger Kubernetes源码分析——apiserver Kubernetes源码分析——kubelet Kubernetes整体结构 ansible学习 Kubernetes源码分析——从kubectl开始 jib源码分析之Step实现 kubernetes实践 线程排队 jib源码分析之细节 从一个签名框架看待机制和策略 跨主机容器通信 jib源码分析及应用 docker环境下的持续构建 docker环境下的持续发布 一个容器多个进程 kubernetes yaml配置 marathon-client 源码分析 《持续交付36讲》笔记 程序猿应该知道的 mybatis学习 无锁数据结构和算法 《Container-Networking-Docker-Kubernetes》笔记 活用linux 命令 为什么很多业务程序猿觉得数据结构和算法没用? 串一串一致性协议 当我在说PaaS时,我在说什么 《数据结构与算法之美》——数据结构笔记 swagger PouchContainer技术分享体会 harbor学习 用groovy 来动态化你的代码 《深入剖析kubernetes》笔记 精简代码的利器——lombok 学习 java 语言的动态性 rxjava3——背压 rxjava2——线程切换 spring cloud 初识 JVM4——《深入拆解java 虚拟机》笔记 《how tomcat works》笔记 commons-pipeline 源码分析 hystrix 学习 rxjava1——概念 Redis 学习 TIDB 学习 分布式计算系统的那些套路 Storm 学习 AQS3——论文学习 Unsafe Spark Stream 学习 linux 文件系统 mysql 批量操作优化 《自己动手写docker》笔记 java8 实践 中本聪比特币白皮书 细读 区块链泛谈 比特币 大杂烩 总纲——如何学习分布式系统 forkjoin 泛谈 hbase 泛谈 看不见摸不着的cdn是啥 《jdk8 in action》笔记 程序猿视角看网络 calico 问题排查 bgp初识 mesos 的一些tips mesos 集成 calico calico AQS2——粗略的代码分析 我们能用反射做什么 web 跨域问题 《clean code》笔记 compensable-transaction 源码分析 硬件对软件设计的影响 elasticsearch 初步认识 mockito简介及源码分析 线上用docker要解决的问题 《Apache Kafka源码分析》——Producer与Consumer 停止容器 dns隐藏的一个坑 《mysql技术内幕》笔记2 《mysql技术内幕》笔记1 log4j学习 为什么netty比较难懂? 回溯法 apollo client源码分析及看待面向对象设计 java系并发模型的发展 从一个marathon的问题开始的 docker 环境(主要运行java项目)常见问题 Scala的一些梗 OpenTSDB 入门 spring事务小结 事务一致性 javascript应用在哪里 netty中的future和promise 《netty in action》读书笔记 netty对http2协议的解析 ssl证书是什么东西 一些tricky的code http那些事 苹果APNs推送框架pushy apple 推送那些事儿 编写java框架的几大利器 JVM3——java内存模型 java concurrent 工具类 java exception java io涉及到的一些linux知识 network channel network byte buffer 测试环境docker化实践 通用transport层框架pigeon netty(七)netty在框架中的使用套路 Nginx简单使用 《Linux内核设计的艺术》小结 从Go并发编程模型想到的 mesos深入 Macvlan Linux网络源代码学习2 《docker源码分析》小结 对web系统的一些理解 docker中涉及到的一些linux知识 hystrix学习 Linux网络源代码学习 Docker网络五,docker网络的回顾 zookeeper三重奏 数据库的一些知识 Spark 泛谈 commons-chain netty(六)netty回顾 Thrift基本原理与实践(三) Thrift基本原理与实践(二) Thrift基本原理与实践(一) Future 回调 Docker0.1.0源码分析 基于spring boot和Docker搭建微服务 通过Docker Plugin来扩展Docker Engine java gc Docker网络四,基于Centos搭建Docker跨主机网络 google guava的一些理解 Jedis源码分析 Redis概述 Docker回顾 深度学习是个什么鬼 Docker网络三,基于OVS实现Docker跨主机网络 Linux网络命令操作 JTA与TCC 换个角度看待设计模式 Scala初识 netty(四)netty对http协议的实现(废弃) netty(三)netty框架泛谈 向Hadoop学习NIO的使用 以新的角度看数据结构 AQS1——并发相关的硬件与内核支持 使用Ubuntu要做的一些环境准备 Docker网络二,libnetwork systemd 简介 那些有用的sql语句 异构数据库表在线同步 spring aop 实现原理简述——背景知识 quartz 源码分析 基于docker搭建测试环境(二) spring aop 实现原理简述 我们编程的那些潜意识 自己动手写spring(八) 支持AOP 自己动手写spring(七) 类结构设计调整 分析log日志 一次代码调试的过程 自己动手写spring(六) 支持FactoryBean 自己动手写spring(九) 总结 自己动手写spring(五) bean的生命周期管理 自己动手写spring(四) 整合xml与注解方式 自己动手写spring(三) 支持注解方式 自己动手写spring(二) 创建一个bean工厂 自己动手写spring(一) 使用digester varnish 简单使用 docker volume 关于docker image的那点事儿 基于docker搭建测试环境 分布式配置系统 JVM2——JVM和传统OS对比 git spring rmi和thrift maven/ant/gradle使用 再看tcp mesos简介 缓存系统——具体组件 缓存系统 java nio的多线程扩展 多线程设计模式/《Concurrency Models》笔记 回头看Spring IOC IntelliJ IDEA使用 Java泛型 vagrant 使用 Go 常用的一些库 Netty(一)初步了解 java mina Golang开发环境搭建(Windows下) java nio入门 ibatis自动生成类和文件 Python初学 Goroutine 调度模型猜想 一些编程相关的名词 虚拟网络 《程序员的自我修养》小结 VPN(Virtual Private Network) Hadoop安装与调试 Kubernetes持久化存储 Kubernetes 其它特性 访问Kubernetes上的服务 Kubernetes副本管理 Kubernetes pod 组件 使用etcd + confd + nginx做动态负载均衡 nginx安装与简单使用 在CoreOS集群上搭建Kubernetes 如何通过fleet unit files 来构建灵活的服务 CoreOS 安装 定制自己的boot2docker.iso CoreOS 使用 Go初学 JVM1——jvm小结 硬币和扑克牌问题 LRU实现 virtualbox 使用 os->c->java 多线程 容器类概述 zabbix 使用 zabbix 安装 Linux中的一些点 关于集群监控 ThreadLocal小结 我对Hadoop的认识 haproxy安装 docker快速入门

标签


测试环境docker化实践

2017年03月29日

简介

为什么要docker化?

  1. 标准化

    • 配置标准化,以部署tomcat为例,实际物理环境中,通常一台物理机部署多个tomcat,这就存在tomcat的端口及目录管理问题。 理想状态下:一个项目一个主机tomcat,tomcat永远位于/usr/local/tomcat(或其它你喜欢的位置)下,对外端口是8080,debug端口是8000.

    • 部署标准化,现在云平台越来越流行,同时,也不会立即丢弃物理环境,因此必然存在着同时向云环境和物理环境部署的问题。这就需要一系列工具,能够屏蔽物理环境和云环境的差异,docker在其中扮演重要角色。

  2. api化,通过api接口操作项目的部署(cpu、内存分配、机器分配、实例数管理等),而不是原来物理机环境的的手工命令行操作。
  3. 自动化,调度系统可以根据api进行一些策略性的反应,比如自动扩容缩容。

上述工作,原有的技术手段不是不可以做,可是太麻烦,可用性和扩展性都不够好。

此外还有一些调度问题,比如:测试机器多了之后(比如100台), 对于一个新项目,到底部署在哪一台机器上呢(哪一台机器的负载比较低呢)?

几个小目标

  1. 业务之间不互相干扰

    • 一个项目/war一虚拟机/容器
    • Ip-pert-task
  2. 容器之间、容器与物理机之间可以互通
  3. 容器编排:健康检查、容器调度等
  4. 使用方式:通过yaml/json来描述任务,通过api部署
  网段 对外抽象
基本环境:物理环境 192.168.0.0/16 一台台互联互通的物理机,大部分要手工
目标:容器环境 172.xx.0.0/16 marathon标准化的api,大部分操作(deploy、scal等)可以自动化

总结一下,基于n台物理机搭建容器环境,整个工作的主线:一个项目一个主机 ==> 物理机资源不够 ==> 虚拟化 ==> 轻量级虚拟化 ==> docker ==> 针对docker容器带来的网络、存储等问题 ==> 集群编排 ==> 对CI/CD的影响。

网络

虚拟化网络的两种思路:

  1. Overlay

    • 隧道,通常用到一个专门的解封包工具
    • 路由,每个物理机充作一个路由器,对外,将容器数据路由到目标机器上;对内,将收到的数据路由到目标容器中。

    通常需要额外的维护物理机以及物理机上容器ip(段)的映射关系

  2. Underlay,不准确的说,容器的网卡暴露在物理网络中,直接收发,通常由外部设备(交换机)负责网络的连通性。

经过对比,我们采用了macvlan,主要是因为:

  1. 简单
  2. 效率高
  3. 我们就是想将容器“当成”虚拟机用,容器之间互通就行,不需要支持复杂的网络伸缩、隔离、安全等策略。

关于macvlan,这涉及到lan ==> vlan => macvlan 的发展过程,请读者自行了解。网络部分参见docker macvlan实践

ip分配问题

对于物理机、kvm等虚拟机来说,其生命周期很长,ip一经分配便几乎不变,因此通常由人工通过命令或web界面手动分配。而对于docker容器来说,尤其是测试环境,容器的创建和销毁非常频繁,这就涉及到频繁的ip分配和释放。因此,ip分配必须是自动的,并且有一个ip资源池来管理ip。

在docker网络中,CNM(Container Network Management)模块通过IPAM(IP address management)driver管理IP地址的分配。我们基于TalkingData/Shrike改写了自己的ipam插件,fix了在多实例部署模式(一个docker host部署一个ipam,以防止单实例模式出现问题时,整个系统不可用的问题)下的重复存取问题。

编排

docker解决了单机的虚拟化,但当一个新部署任务到达,由集群中的哪一个docker执行呢?因此,docker之外,需要一个编排工具,实现集群的资源管理和任务调度。

编排工具 优缺点
swarm/swarm mode docker原生,但目前更多是一个docker任务分发工具;换句话说,作为docker分发工具是够用的,但作为集群资源管理和任务调度工具是勉强的
k8s k8s提供的pod、service、replicaController概念简(固)化了一些问题,但使用起来也相对复杂
mesos + marathon(本文采用) 在docker管理和分布式资源管理之间,找到了一个比较好的平衡点

这些工具均采用maser/slave架构,假设我们将物理机分为master和slave,这些工具在slave上运行一个agent(任务执行和数据上报),在master上运行一个manager(任务分发和数据汇总)。从功能上说,任务分发和容器资源汇总,这些工具基本都可以满足要求。就我的理解,其实这些工具的根本区别就是:发展历程的不同。

  1. 从一个docker/容器化调度工具, 扩展成一个分布式集群管理工具
  2. 从一个分布式资源管理工具 ,增加支持docker的feature

其中的不同,请大家自己体会一下。

到目前为止,根据我们测试环境的实践,发现我司有以下特点

  1. 对编排的需求很弱,基本都是单个微服务项目的部署。微服务项目的协同、服务发现等由公司的服务治理框架负责。
  2. 基础服务,比如mysql、hadoop等暂不上docker环境
  3. 需要查询编排工具的api接口,同时有一个良好的web界面,对编排工具的数据汇总、资源管理能力有一定要求。

因此,最终我们决定使用marathon + mesos 方案。当然,后面在实践的过程中,因为网络和编排工具的选择,ip变化的问题给我们带来很大的困扰,甚至专门开发了几个小工具,参见下文。

image的组织

docker的厉害之处,不在于发明了一系列新技术,而在于整合了一系列老技术,比如aufs、lxc等,在docker之前,我司运维也经常使用cgroup来限制一些c项目进程使用的资源。阿里、腾讯等大厂在cgroup、namespace等基础上搞一套自己的容器工具,现在也广为人知。甚至在《尽在双11:阿里巴巴技术演进与超越》关于docker部分中提到,对于阿里,使用docker初衷是docker镜像化,也就是其带来的应用环境标准化,而不是容器化。

docker镜像的实践主要涉及到以下问题:

  1. 搭建私有image repository
  2. 对layer进行组织
  3. 镜像的分发较慢

    • 预分发,但这不解决根本,只适用部分场景
    • 对layer进行压缩,京东目前采用该方案
  4. 镜像化带来的容器重启问题。因为镜像是一体的,哪怕只有一点更改,镜像的发布都必须销毁之前的容器,然后按照新镜像创建新容器。耗时是一方面,对以下场景也很不友好

    • 只是更新一个文件,项目、容器均不需要重启
    • 因为加载缓存等原因,项目、容器启动比较耗时

    对于具体的场景,可以有具体的办法规避。对于通用的解决方案,阿里通过改写docker,对镜像支持hotfix标识,deploy这类镜像,不再创建新容器,而是更新容器。

我们要对镜像的layer进行组织,以最大化的复用layer。

镜像名 功能
alpine base image
alpine+ 一些基本的命令
jdk6/7/8、ssh 新增jdk
tomcat6/tomcat7/tomcat8 新增tomcat

因为我们还只是在测试环境使用,镜像较慢的矛盾还不是太突出,这方面并没有做什么工作。

写到这里,我们可以看到一个技术之外的技术问题。阿里对于docker image feature的改造

  1. 可以减少容器的重启次数,进而减少ip的分配和释放。容器生命周期的延长,给用户的感觉是更像一个虚拟机。减少ip变化对其它组件的影响,一些组件不再必要。
  2. 影响到容器的编排策略。即deploy新的任务不再是选择一个机器运行容器,而是找到原来的容器应用变更。这大概是阿里采用docker swarm编排工具并改造docker swarm的部分原因。毕竟docker swarm起点就是一个docker编排工具,跟docker更亲近,也更容易改造。
  3. 我们在docker化的过程中,对docker的各种特性一则认为天经地义,二则逆来顺受。出现问题,要么想办法规避,要么在外围造个轮子去解决(还是规避)。这让我想到了最近在看的《大明王朝1566》,皇帝要大兴土木,严党要贪污,胡宗宪左支右绌,勉力维持。海瑞认为问题的根儿在皇帝,直接上了《治安疏》。两者都算不上什么错,胡宗宪在他的位置,重要的是保住总督的位置,这样才能打倭寇。作为一个名义上的严党分子,这样的话也不能他来说。我们在技术的选择上,也经常碰到这样的问题,各种妥协。但越早的认识到各种方案的缺陷,才会避免陷入为了方案而方案,做到预判,嗅到风向变化,随机应变。

CI

本质上jenkins如何跟marathon结合的问题,现成的方案很多,本文不再赘述。

关键是提供几套不同的模板,以方便不同业务的童鞋使用。

容器变化带来的问题

使用docker后,容器在物理机之间自由漂移,物理机的角色弱化成了:单纯的提供计算资源。但带来的问题是,影响了许多系统的正常运行。

ip变化

许多系统的正常运行依赖ip,ip不稳定带来一系列的问题。而解决ip的变化问题主要有以下方案

  1. 新增组件屏蔽ip变化
  2. 提供dns服务(有缓存和多实例问题)
  3. 不要改变ip

    • 既然重启后,ip会改变,就减少容器重启
    • 服务与ip绑定(这个方案非常不优雅)

对于web服务,ip的变化导致要经常更改nginx配置,为此,我们专门改写了一个nginx插件来解决这个问题。参见一个大牛的工具weibocom/nginx-upsync-module,我为大牛的工具新增了zk支持,参见topsli/nginx-upsync-module-zk

对于rpc服务,我司有自己独立开发的服务治理系统,实现服务注册和发现。但该系统有审核机制,系统认为服务部署在新的机器上时(通过ip识别新机器)应先审核才能对外使用。我们和开发同学协调,在服务上线时,进行额外处理来屏蔽掉这个问题。遗憾的是,对于跨语言调用,因为rpc客户端不通用,仍有很多不便。

文件存储

有许多项目会将业务数据存储在文件中,这就意味着项目deploy进而容器重启之后,要能找到并访问这些文件。在docker环境下主要有以下两种方案:

  1. Docker volumn + cluster fs
  2. Docker volume plugin

我们当下主要采用第一种,将cluster fs mount到每台docker host的特定目录(例如/data),打通container /data ==> docker host /data == cluster fs /data,任意容器即可共享访问/data目录下的数据。

日志采集与查看

为了将日志持久化存储,我们将容器的日志目录映射到了物理机上。but,一个项目的日志分散在多个物理机中。

我司原有日志采集报警系统,负责日志采集、汇总、报警。因此容器化后,日志的采集和报警并不会有什么影响。但该系统只采集错误日志,导致开发人员要查看日志以调试程序时,比较麻烦。最初,我们提供了一个web console来访问容器,操作步骤为:login ==> find container ==> input console ==> op。但很多童鞋依然认为过于繁琐,并且web console的性能也不理想。而直接为每个容器配置ssh server,又会对safe shutdown等产生不良影响。因此

  1. 登陆测试环境,90%是为了查看日志
  2. 和开发约定项目的日志目录,并将其映射到物理机下
  3. 间接配置ssh。每个物理机启动一个固定ip的ssh container,并映射日志目录
  4. 使用go语言实现了一个essh工具,essh -i marathon_app_name即可访问对应的ssh container实例并查看日志。

当然,日志的问题,也可以通过elk解决。

部署有状态服务

其它问题

mesos + marathon + docker的文章很多,其实这才是本文的重点。

  1. Base image的影响

  2. 时区、tomcat PermGensize、编码等参数值的修正
  3. base image为了尽可能精简,使用了alpine。其一些文件的缺失,导致一些java代码无法执行。比如,当去掉/etc/hosts中ip和容器主机名的映射后,加上/etc/sysconfig/network的缺失,导致java代码InetAddress.getLocalHost()执行失败。参见ava InetAddress.getLocalHost() 在linux里实现

  4. Safe shutdown,部分服务退出时要保存状态数据
  5. 支持sshd(已解决,但对解决其他问题是个有益的参考),以方便大家查看日志文件(web console对查看大量日志时,还是不太好用)
    1. 使用supervisord(管理ssh和tomcat),需要通过supervisord传导SIGTERM信号给tomcat,以确保tomcat可以safeshutdown。该方法比较low,经常发生supervisord让tomcat退出,但自己不退出的情况。
    2. 每台机器启动跟一个专门的容器,映射一些必要的volume,以供大家查看日志等文件
  6. Marathon多机房主备问题
  7. 容器的漂移对日志采集、分析系统的影响
  8. 对容器提供dns服务,以使其可以正确解析外部服务的hostname
  9. 如何更好的推广与应用的问题(这是个大问题,包括分享ppt的写作思路、jenkins模板的创建等,不比解决技术难题耗费的精力少)

todo

  1. 日志采集,简化日志搜索
  2. 一个集中式的DC。当下,项目部署的各个阶段分散在不同的组件中。呈现出来的使用方式,不是面向用户的。

    • jenkins负责代码的编译和marathon job的触发
    • marathon负责任务调度、销毁和回滚等
    • portainer负责容器数据的界面化以及web console

这样带来的问题是

  1. 对于运维人员人说,一些操作不能固化下来,比如回滚等,手工操作易出错。
  2. 对于用户来说,容易想当然的通过portainer进行增删改容器的操作,进而引起系统的不一致。
  3. 因为是现成系统,很难加入我们自己的逻辑,这使得配置上经常出现一些语义冲突的情况。

引用

Docker 在 Bilibili 的实战:由痛点推动的容器化